File:  [local] / rpl / lapack / lapack / dgbrfs.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 4 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
    2:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
    3:      $                   INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
   11: *
   12: *     .. Scalar Arguments ..
   13:       CHARACTER          TRANS
   14:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            IPIV( * ), IWORK( * )
   18:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   19:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DGBRFS improves the computed solution to a system of linear
   26: *  equations when the coefficient matrix is banded, and provides
   27: *  error bounds and backward error estimates for the solution.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  TRANS   (input) CHARACTER*1
   33: *          Specifies the form of the system of equations:
   34: *          = 'N':  A * X = B     (No transpose)
   35: *          = 'T':  A**T * X = B  (Transpose)
   36: *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   37: *
   38: *  N       (input) INTEGER
   39: *          The order of the matrix A.  N >= 0.
   40: *
   41: *  KL      (input) INTEGER
   42: *          The number of subdiagonals within the band of A.  KL >= 0.
   43: *
   44: *  KU      (input) INTEGER
   45: *          The number of superdiagonals within the band of A.  KU >= 0.
   46: *
   47: *  NRHS    (input) INTEGER
   48: *          The number of right hand sides, i.e., the number of columns
   49: *          of the matrices B and X.  NRHS >= 0.
   50: *
   51: *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
   52: *          The original band matrix A, stored in rows 1 to KL+KU+1.
   53: *          The j-th column of A is stored in the j-th column of the
   54: *          array AB as follows:
   55: *          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
   56: *
   57: *  LDAB    (input) INTEGER
   58: *          The leading dimension of the array AB.  LDAB >= KL+KU+1.
   59: *
   60: *  AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N)
   61: *          Details of the LU factorization of the band matrix A, as
   62: *          computed by DGBTRF.  U is stored as an upper triangular band
   63: *          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
   64: *          the multipliers used during the factorization are stored in
   65: *          rows KL+KU+2 to 2*KL+KU+1.
   66: *
   67: *  LDAFB   (input) INTEGER
   68: *          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
   69: *
   70: *  IPIV    (input) INTEGER array, dimension (N)
   71: *          The pivot indices from DGBTRF; for 1<=i<=N, row i of the
   72: *          matrix was interchanged with row IPIV(i).
   73: *
   74: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   75: *          The right hand side matrix B.
   76: *
   77: *  LDB     (input) INTEGER
   78: *          The leading dimension of the array B.  LDB >= max(1,N).
   79: *
   80: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
   81: *          On entry, the solution matrix X, as computed by DGBTRS.
   82: *          On exit, the improved solution matrix X.
   83: *
   84: *  LDX     (input) INTEGER
   85: *          The leading dimension of the array X.  LDX >= max(1,N).
   86: *
   87: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   88: *          The estimated forward error bound for each solution vector
   89: *          X(j) (the j-th column of the solution matrix X).
   90: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   91: *          is an estimated upper bound for the magnitude of the largest
   92: *          element in (X(j) - XTRUE) divided by the magnitude of the
   93: *          largest element in X(j).  The estimate is as reliable as
   94: *          the estimate for RCOND, and is almost always a slight
   95: *          overestimate of the true error.
   96: *
   97: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   98: *          The componentwise relative backward error of each solution
   99: *          vector X(j) (i.e., the smallest relative change in
  100: *          any element of A or B that makes X(j) an exact solution).
  101: *
  102: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
  103: *
  104: *  IWORK   (workspace) INTEGER array, dimension (N)
  105: *
  106: *  INFO    (output) INTEGER
  107: *          = 0:  successful exit
  108: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  109: *
  110: *  Internal Parameters
  111: *  ===================
  112: *
  113: *  ITMAX is the maximum number of steps of iterative refinement.
  114: *
  115: *  =====================================================================
  116: *
  117: *     .. Parameters ..
  118:       INTEGER            ITMAX
  119:       PARAMETER          ( ITMAX = 5 )
  120:       DOUBLE PRECISION   ZERO
  121:       PARAMETER          ( ZERO = 0.0D+0 )
  122:       DOUBLE PRECISION   ONE
  123:       PARAMETER          ( ONE = 1.0D+0 )
  124:       DOUBLE PRECISION   TWO
  125:       PARAMETER          ( TWO = 2.0D+0 )
  126:       DOUBLE PRECISION   THREE
  127:       PARAMETER          ( THREE = 3.0D+0 )
  128: *     ..
  129: *     .. Local Scalars ..
  130:       LOGICAL            NOTRAN
  131:       CHARACTER          TRANST
  132:       INTEGER            COUNT, I, J, K, KASE, KK, NZ
  133:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  134: *     ..
  135: *     .. Local Arrays ..
  136:       INTEGER            ISAVE( 3 )
  137: *     ..
  138: *     .. External Subroutines ..
  139:       EXTERNAL           DAXPY, DCOPY, DGBMV, DGBTRS, DLACN2, XERBLA
  140: *     ..
  141: *     .. Intrinsic Functions ..
  142:       INTRINSIC          ABS, MAX, MIN
  143: *     ..
  144: *     .. External Functions ..
  145:       LOGICAL            LSAME
  146:       DOUBLE PRECISION   DLAMCH
  147:       EXTERNAL           LSAME, DLAMCH
  148: *     ..
  149: *     .. Executable Statements ..
  150: *
  151: *     Test the input parameters.
  152: *
  153:       INFO = 0
  154:       NOTRAN = LSAME( TRANS, 'N' )
  155:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  156:      $    LSAME( TRANS, 'C' ) ) THEN
  157:          INFO = -1
  158:       ELSE IF( N.LT.0 ) THEN
  159:          INFO = -2
  160:       ELSE IF( KL.LT.0 ) THEN
  161:          INFO = -3
  162:       ELSE IF( KU.LT.0 ) THEN
  163:          INFO = -4
  164:       ELSE IF( NRHS.LT.0 ) THEN
  165:          INFO = -5
  166:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  167:          INFO = -7
  168:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  169:          INFO = -9
  170:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  171:          INFO = -12
  172:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  173:          INFO = -14
  174:       END IF
  175:       IF( INFO.NE.0 ) THEN
  176:          CALL XERBLA( 'DGBRFS', -INFO )
  177:          RETURN
  178:       END IF
  179: *
  180: *     Quick return if possible
  181: *
  182:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  183:          DO 10 J = 1, NRHS
  184:             FERR( J ) = ZERO
  185:             BERR( J ) = ZERO
  186:    10    CONTINUE
  187:          RETURN
  188:       END IF
  189: *
  190:       IF( NOTRAN ) THEN
  191:          TRANST = 'T'
  192:       ELSE
  193:          TRANST = 'N'
  194:       END IF
  195: *
  196: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  197: *
  198:       NZ = MIN( KL+KU+2, N+1 )
  199:       EPS = DLAMCH( 'Epsilon' )
  200:       SAFMIN = DLAMCH( 'Safe minimum' )
  201:       SAFE1 = NZ*SAFMIN
  202:       SAFE2 = SAFE1 / EPS
  203: *
  204: *     Do for each right hand side
  205: *
  206:       DO 140 J = 1, NRHS
  207: *
  208:          COUNT = 1
  209:          LSTRES = THREE
  210:    20    CONTINUE
  211: *
  212: *        Loop until stopping criterion is satisfied.
  213: *
  214: *        Compute residual R = B - op(A) * X,
  215: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  216: *
  217:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  218:          CALL DGBMV( TRANS, N, N, KL, KU, -ONE, AB, LDAB, X( 1, J ), 1,
  219:      $               ONE, WORK( N+1 ), 1 )
  220: *
  221: *        Compute componentwise relative backward error from formula
  222: *
  223: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  224: *
  225: *        where abs(Z) is the componentwise absolute value of the matrix
  226: *        or vector Z.  If the i-th component of the denominator is less
  227: *        than SAFE2, then SAFE1 is added to the i-th components of the
  228: *        numerator and denominator before dividing.
  229: *
  230:          DO 30 I = 1, N
  231:             WORK( I ) = ABS( B( I, J ) )
  232:    30    CONTINUE
  233: *
  234: *        Compute abs(op(A))*abs(X) + abs(B).
  235: *
  236:          IF( NOTRAN ) THEN
  237:             DO 50 K = 1, N
  238:                KK = KU + 1 - K
  239:                XK = ABS( X( K, J ) )
  240:                DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
  241:                   WORK( I ) = WORK( I ) + ABS( AB( KK+I, K ) )*XK
  242:    40          CONTINUE
  243:    50       CONTINUE
  244:          ELSE
  245:             DO 70 K = 1, N
  246:                S = ZERO
  247:                KK = KU + 1 - K
  248:                DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
  249:                   S = S + ABS( AB( KK+I, K ) )*ABS( X( I, J ) )
  250:    60          CONTINUE
  251:                WORK( K ) = WORK( K ) + S
  252:    70       CONTINUE
  253:          END IF
  254:          S = ZERO
  255:          DO 80 I = 1, N
  256:             IF( WORK( I ).GT.SAFE2 ) THEN
  257:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  258:             ELSE
  259:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  260:      $             ( WORK( I )+SAFE1 ) )
  261:             END IF
  262:    80    CONTINUE
  263:          BERR( J ) = S
  264: *
  265: *        Test stopping criterion. Continue iterating if
  266: *           1) The residual BERR(J) is larger than machine epsilon, and
  267: *           2) BERR(J) decreased by at least a factor of 2 during the
  268: *              last iteration, and
  269: *           3) At most ITMAX iterations tried.
  270: *
  271:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  272:      $       COUNT.LE.ITMAX ) THEN
  273: *
  274: *           Update solution and try again.
  275: *
  276:             CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
  277:      $                   WORK( N+1 ), N, INFO )
  278:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  279:             LSTRES = BERR( J )
  280:             COUNT = COUNT + 1
  281:             GO TO 20
  282:          END IF
  283: *
  284: *        Bound error from formula
  285: *
  286: *        norm(X - XTRUE) / norm(X) .le. FERR =
  287: *        norm( abs(inv(op(A)))*
  288: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  289: *
  290: *        where
  291: *          norm(Z) is the magnitude of the largest component of Z
  292: *          inv(op(A)) is the inverse of op(A)
  293: *          abs(Z) is the componentwise absolute value of the matrix or
  294: *             vector Z
  295: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  296: *          EPS is machine epsilon
  297: *
  298: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  299: *        is incremented by SAFE1 if the i-th component of
  300: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  301: *
  302: *        Use DLACN2 to estimate the infinity-norm of the matrix
  303: *           inv(op(A)) * diag(W),
  304: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  305: *
  306:          DO 90 I = 1, N
  307:             IF( WORK( I ).GT.SAFE2 ) THEN
  308:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  309:             ELSE
  310:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  311:             END IF
  312:    90    CONTINUE
  313: *
  314:          KASE = 0
  315:   100    CONTINUE
  316:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  317:      $                KASE, ISAVE )
  318:          IF( KASE.NE.0 ) THEN
  319:             IF( KASE.EQ.1 ) THEN
  320: *
  321: *              Multiply by diag(W)*inv(op(A)**T).
  322: *
  323:                CALL DGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
  324:      $                      WORK( N+1 ), N, INFO )
  325:                DO 110 I = 1, N
  326:                   WORK( N+I ) = WORK( N+I )*WORK( I )
  327:   110          CONTINUE
  328:             ELSE
  329: *
  330: *              Multiply by inv(op(A))*diag(W).
  331: *
  332:                DO 120 I = 1, N
  333:                   WORK( N+I ) = WORK( N+I )*WORK( I )
  334:   120          CONTINUE
  335:                CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
  336:      $                      WORK( N+1 ), N, INFO )
  337:             END IF
  338:             GO TO 100
  339:          END IF
  340: *
  341: *        Normalize error.
  342: *
  343:          LSTRES = ZERO
  344:          DO 130 I = 1, N
  345:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  346:   130    CONTINUE
  347:          IF( LSTRES.NE.ZERO )
  348:      $      FERR( J ) = FERR( J ) / LSTRES
  349: *
  350:   140 CONTINUE
  351: *
  352:       RETURN
  353: *
  354: *     End of DGBRFS
  355: *
  356:       END

CVSweb interface <joel.bertrand@systella.fr>