Annotation of rpl/lapack/lapack/dgbrfs.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DGBRFS
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGBRFS + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbrfs.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbrfs.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbrfs.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
        !            22: *                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
        !            23: *                          INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          TRANS
        !            27: *       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       INTEGER            IPIV( * ), IWORK( * )
        !            31: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            32: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
        !            33: *       ..
        !            34: *  
        !            35: *
        !            36: *> \par Purpose:
        !            37: *  =============
        !            38: *>
        !            39: *> \verbatim
        !            40: *>
        !            41: *> DGBRFS improves the computed solution to a system of linear
        !            42: *> equations when the coefficient matrix is banded, and provides
        !            43: *> error bounds and backward error estimates for the solution.
        !            44: *> \endverbatim
        !            45: *
        !            46: *  Arguments:
        !            47: *  ==========
        !            48: *
        !            49: *> \param[in] TRANS
        !            50: *> \verbatim
        !            51: *>          TRANS is CHARACTER*1
        !            52: *>          Specifies the form of the system of equations:
        !            53: *>          = 'N':  A * X = B     (No transpose)
        !            54: *>          = 'T':  A**T * X = B  (Transpose)
        !            55: *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
        !            56: *> \endverbatim
        !            57: *>
        !            58: *> \param[in] N
        !            59: *> \verbatim
        !            60: *>          N is INTEGER
        !            61: *>          The order of the matrix A.  N >= 0.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] KL
        !            65: *> \verbatim
        !            66: *>          KL is INTEGER
        !            67: *>          The number of subdiagonals within the band of A.  KL >= 0.
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in] KU
        !            71: *> \verbatim
        !            72: *>          KU is INTEGER
        !            73: *>          The number of superdiagonals within the band of A.  KU >= 0.
        !            74: *> \endverbatim
        !            75: *>
        !            76: *> \param[in] NRHS
        !            77: *> \verbatim
        !            78: *>          NRHS is INTEGER
        !            79: *>          The number of right hand sides, i.e., the number of columns
        !            80: *>          of the matrices B and X.  NRHS >= 0.
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in] AB
        !            84: *> \verbatim
        !            85: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
        !            86: *>          The original band matrix A, stored in rows 1 to KL+KU+1.
        !            87: *>          The j-th column of A is stored in the j-th column of the
        !            88: *>          array AB as follows:
        !            89: *>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
        !            90: *> \endverbatim
        !            91: *>
        !            92: *> \param[in] LDAB
        !            93: *> \verbatim
        !            94: *>          LDAB is INTEGER
        !            95: *>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[in] AFB
        !            99: *> \verbatim
        !           100: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
        !           101: *>          Details of the LU factorization of the band matrix A, as
        !           102: *>          computed by DGBTRF.  U is stored as an upper triangular band
        !           103: *>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
        !           104: *>          the multipliers used during the factorization are stored in
        !           105: *>          rows KL+KU+2 to 2*KL+KU+1.
        !           106: *> \endverbatim
        !           107: *>
        !           108: *> \param[in] LDAFB
        !           109: *> \verbatim
        !           110: *>          LDAFB is INTEGER
        !           111: *>          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
        !           112: *> \endverbatim
        !           113: *>
        !           114: *> \param[in] IPIV
        !           115: *> \verbatim
        !           116: *>          IPIV is INTEGER array, dimension (N)
        !           117: *>          The pivot indices from DGBTRF; for 1<=i<=N, row i of the
        !           118: *>          matrix was interchanged with row IPIV(i).
        !           119: *> \endverbatim
        !           120: *>
        !           121: *> \param[in] B
        !           122: *> \verbatim
        !           123: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           124: *>          The right hand side matrix B.
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[in] LDB
        !           128: *> \verbatim
        !           129: *>          LDB is INTEGER
        !           130: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in,out] X
        !           134: *> \verbatim
        !           135: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           136: *>          On entry, the solution matrix X, as computed by DGBTRS.
        !           137: *>          On exit, the improved solution matrix X.
        !           138: *> \endverbatim
        !           139: *>
        !           140: *> \param[in] LDX
        !           141: *> \verbatim
        !           142: *>          LDX is INTEGER
        !           143: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[out] FERR
        !           147: *> \verbatim
        !           148: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           149: *>          The estimated forward error bound for each solution vector
        !           150: *>          X(j) (the j-th column of the solution matrix X).
        !           151: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           152: *>          is an estimated upper bound for the magnitude of the largest
        !           153: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           154: *>          largest element in X(j).  The estimate is as reliable as
        !           155: *>          the estimate for RCOND, and is almost always a slight
        !           156: *>          overestimate of the true error.
        !           157: *> \endverbatim
        !           158: *>
        !           159: *> \param[out] BERR
        !           160: *> \verbatim
        !           161: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           162: *>          The componentwise relative backward error of each solution
        !           163: *>          vector X(j) (i.e., the smallest relative change in
        !           164: *>          any element of A or B that makes X(j) an exact solution).
        !           165: *> \endverbatim
        !           166: *>
        !           167: *> \param[out] WORK
        !           168: *> \verbatim
        !           169: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
        !           170: *> \endverbatim
        !           171: *>
        !           172: *> \param[out] IWORK
        !           173: *> \verbatim
        !           174: *>          IWORK is INTEGER array, dimension (N)
        !           175: *> \endverbatim
        !           176: *>
        !           177: *> \param[out] INFO
        !           178: *> \verbatim
        !           179: *>          INFO is INTEGER
        !           180: *>          = 0:  successful exit
        !           181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           182: *> \endverbatim
        !           183: *
        !           184: *> \par Internal Parameters:
        !           185: *  =========================
        !           186: *>
        !           187: *> \verbatim
        !           188: *>  ITMAX is the maximum number of steps of iterative refinement.
        !           189: *> \endverbatim
        !           190: *
        !           191: *  Authors:
        !           192: *  ========
        !           193: *
        !           194: *> \author Univ. of Tennessee 
        !           195: *> \author Univ. of California Berkeley 
        !           196: *> \author Univ. of Colorado Denver 
        !           197: *> \author NAG Ltd. 
        !           198: *
        !           199: *> \date November 2011
        !           200: *
        !           201: *> \ingroup doubleGBcomputational
        !           202: *
        !           203: *  =====================================================================
1.1       bertrand  204:       SUBROUTINE DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
                    205:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
                    206:      $                   INFO )
                    207: *
1.8     ! bertrand  208: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  209: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    210: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  211: *     November 2011
1.1       bertrand  212: *
                    213: *     .. Scalar Arguments ..
                    214:       CHARACTER          TRANS
                    215:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                    216: *     ..
                    217: *     .. Array Arguments ..
                    218:       INTEGER            IPIV( * ), IWORK( * )
                    219:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    220:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                    221: *     ..
                    222: *
                    223: *  =====================================================================
                    224: *
                    225: *     .. Parameters ..
                    226:       INTEGER            ITMAX
                    227:       PARAMETER          ( ITMAX = 5 )
                    228:       DOUBLE PRECISION   ZERO
                    229:       PARAMETER          ( ZERO = 0.0D+0 )
                    230:       DOUBLE PRECISION   ONE
                    231:       PARAMETER          ( ONE = 1.0D+0 )
                    232:       DOUBLE PRECISION   TWO
                    233:       PARAMETER          ( TWO = 2.0D+0 )
                    234:       DOUBLE PRECISION   THREE
                    235:       PARAMETER          ( THREE = 3.0D+0 )
                    236: *     ..
                    237: *     .. Local Scalars ..
                    238:       LOGICAL            NOTRAN
                    239:       CHARACTER          TRANST
                    240:       INTEGER            COUNT, I, J, K, KASE, KK, NZ
                    241:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    242: *     ..
                    243: *     .. Local Arrays ..
                    244:       INTEGER            ISAVE( 3 )
                    245: *     ..
                    246: *     .. External Subroutines ..
                    247:       EXTERNAL           DAXPY, DCOPY, DGBMV, DGBTRS, DLACN2, XERBLA
                    248: *     ..
                    249: *     .. Intrinsic Functions ..
                    250:       INTRINSIC          ABS, MAX, MIN
                    251: *     ..
                    252: *     .. External Functions ..
                    253:       LOGICAL            LSAME
                    254:       DOUBLE PRECISION   DLAMCH
                    255:       EXTERNAL           LSAME, DLAMCH
                    256: *     ..
                    257: *     .. Executable Statements ..
                    258: *
                    259: *     Test the input parameters.
                    260: *
                    261:       INFO = 0
                    262:       NOTRAN = LSAME( TRANS, 'N' )
                    263:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    264:      $    LSAME( TRANS, 'C' ) ) THEN
                    265:          INFO = -1
                    266:       ELSE IF( N.LT.0 ) THEN
                    267:          INFO = -2
                    268:       ELSE IF( KL.LT.0 ) THEN
                    269:          INFO = -3
                    270:       ELSE IF( KU.LT.0 ) THEN
                    271:          INFO = -4
                    272:       ELSE IF( NRHS.LT.0 ) THEN
                    273:          INFO = -5
                    274:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
                    275:          INFO = -7
                    276:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
                    277:          INFO = -9
                    278:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    279:          INFO = -12
                    280:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    281:          INFO = -14
                    282:       END IF
                    283:       IF( INFO.NE.0 ) THEN
                    284:          CALL XERBLA( 'DGBRFS', -INFO )
                    285:          RETURN
                    286:       END IF
                    287: *
                    288: *     Quick return if possible
                    289: *
                    290:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    291:          DO 10 J = 1, NRHS
                    292:             FERR( J ) = ZERO
                    293:             BERR( J ) = ZERO
                    294:    10    CONTINUE
                    295:          RETURN
                    296:       END IF
                    297: *
                    298:       IF( NOTRAN ) THEN
                    299:          TRANST = 'T'
                    300:       ELSE
                    301:          TRANST = 'N'
                    302:       END IF
                    303: *
                    304: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    305: *
                    306:       NZ = MIN( KL+KU+2, N+1 )
                    307:       EPS = DLAMCH( 'Epsilon' )
                    308:       SAFMIN = DLAMCH( 'Safe minimum' )
                    309:       SAFE1 = NZ*SAFMIN
                    310:       SAFE2 = SAFE1 / EPS
                    311: *
                    312: *     Do for each right hand side
                    313: *
                    314:       DO 140 J = 1, NRHS
                    315: *
                    316:          COUNT = 1
                    317:          LSTRES = THREE
                    318:    20    CONTINUE
                    319: *
                    320: *        Loop until stopping criterion is satisfied.
                    321: *
                    322: *        Compute residual R = B - op(A) * X,
                    323: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    324: *
                    325:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    326:          CALL DGBMV( TRANS, N, N, KL, KU, -ONE, AB, LDAB, X( 1, J ), 1,
                    327:      $               ONE, WORK( N+1 ), 1 )
                    328: *
                    329: *        Compute componentwise relative backward error from formula
                    330: *
                    331: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    332: *
                    333: *        where abs(Z) is the componentwise absolute value of the matrix
                    334: *        or vector Z.  If the i-th component of the denominator is less
                    335: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    336: *        numerator and denominator before dividing.
                    337: *
                    338:          DO 30 I = 1, N
                    339:             WORK( I ) = ABS( B( I, J ) )
                    340:    30    CONTINUE
                    341: *
                    342: *        Compute abs(op(A))*abs(X) + abs(B).
                    343: *
                    344:          IF( NOTRAN ) THEN
                    345:             DO 50 K = 1, N
                    346:                KK = KU + 1 - K
                    347:                XK = ABS( X( K, J ) )
                    348:                DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
                    349:                   WORK( I ) = WORK( I ) + ABS( AB( KK+I, K ) )*XK
                    350:    40          CONTINUE
                    351:    50       CONTINUE
                    352:          ELSE
                    353:             DO 70 K = 1, N
                    354:                S = ZERO
                    355:                KK = KU + 1 - K
                    356:                DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
                    357:                   S = S + ABS( AB( KK+I, K ) )*ABS( X( I, J ) )
                    358:    60          CONTINUE
                    359:                WORK( K ) = WORK( K ) + S
                    360:    70       CONTINUE
                    361:          END IF
                    362:          S = ZERO
                    363:          DO 80 I = 1, N
                    364:             IF( WORK( I ).GT.SAFE2 ) THEN
                    365:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    366:             ELSE
                    367:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    368:      $             ( WORK( I )+SAFE1 ) )
                    369:             END IF
                    370:    80    CONTINUE
                    371:          BERR( J ) = S
                    372: *
                    373: *        Test stopping criterion. Continue iterating if
                    374: *           1) The residual BERR(J) is larger than machine epsilon, and
                    375: *           2) BERR(J) decreased by at least a factor of 2 during the
                    376: *              last iteration, and
                    377: *           3) At most ITMAX iterations tried.
                    378: *
                    379:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    380:      $       COUNT.LE.ITMAX ) THEN
                    381: *
                    382: *           Update solution and try again.
                    383: *
                    384:             CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    385:      $                   WORK( N+1 ), N, INFO )
                    386:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    387:             LSTRES = BERR( J )
                    388:             COUNT = COUNT + 1
                    389:             GO TO 20
                    390:          END IF
                    391: *
                    392: *        Bound error from formula
                    393: *
                    394: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    395: *        norm( abs(inv(op(A)))*
                    396: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    397: *
                    398: *        where
                    399: *          norm(Z) is the magnitude of the largest component of Z
                    400: *          inv(op(A)) is the inverse of op(A)
                    401: *          abs(Z) is the componentwise absolute value of the matrix or
                    402: *             vector Z
                    403: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    404: *          EPS is machine epsilon
                    405: *
                    406: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    407: *        is incremented by SAFE1 if the i-th component of
                    408: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    409: *
                    410: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    411: *           inv(op(A)) * diag(W),
                    412: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    413: *
                    414:          DO 90 I = 1, N
                    415:             IF( WORK( I ).GT.SAFE2 ) THEN
                    416:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    417:             ELSE
                    418:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    419:             END IF
                    420:    90    CONTINUE
                    421: *
                    422:          KASE = 0
                    423:   100    CONTINUE
                    424:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    425:      $                KASE, ISAVE )
                    426:          IF( KASE.NE.0 ) THEN
                    427:             IF( KASE.EQ.1 ) THEN
                    428: *
                    429: *              Multiply by diag(W)*inv(op(A)**T).
                    430: *
                    431:                CALL DGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    432:      $                      WORK( N+1 ), N, INFO )
                    433:                DO 110 I = 1, N
                    434:                   WORK( N+I ) = WORK( N+I )*WORK( I )
                    435:   110          CONTINUE
                    436:             ELSE
                    437: *
                    438: *              Multiply by inv(op(A))*diag(W).
                    439: *
                    440:                DO 120 I = 1, N
                    441:                   WORK( N+I ) = WORK( N+I )*WORK( I )
                    442:   120          CONTINUE
                    443:                CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    444:      $                      WORK( N+1 ), N, INFO )
                    445:             END IF
                    446:             GO TO 100
                    447:          END IF
                    448: *
                    449: *        Normalize error.
                    450: *
                    451:          LSTRES = ZERO
                    452:          DO 130 I = 1, N
                    453:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    454:   130    CONTINUE
                    455:          IF( LSTRES.NE.ZERO )
                    456:      $      FERR( J ) = FERR( J ) / LSTRES
                    457: *
                    458:   140 CONTINUE
                    459: *
                    460:       RETURN
                    461: *
                    462: *     End of DGBRFS
                    463: *
                    464:       END

CVSweb interface <joel.bertrand@systella.fr>