Annotation of rpl/lapack/lapack/dgbrfs.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
        !             2:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
        !             3:      $                   INFO )
        !             4: *
        !             5: *  -- LAPACK routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
        !            11: *
        !            12: *     .. Scalar Arguments ..
        !            13:       CHARACTER          TRANS
        !            14:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       INTEGER            IPIV( * ), IWORK( * )
        !            18:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            19:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  DGBRFS improves the computed solution to a system of linear
        !            26: *  equations when the coefficient matrix is banded, and provides
        !            27: *  error bounds and backward error estimates for the solution.
        !            28: *
        !            29: *  Arguments
        !            30: *  =========
        !            31: *
        !            32: *  TRANS   (input) CHARACTER*1
        !            33: *          Specifies the form of the system of equations:
        !            34: *          = 'N':  A * X = B     (No transpose)
        !            35: *          = 'T':  A**T * X = B  (Transpose)
        !            36: *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
        !            37: *
        !            38: *  N       (input) INTEGER
        !            39: *          The order of the matrix A.  N >= 0.
        !            40: *
        !            41: *  KL      (input) INTEGER
        !            42: *          The number of subdiagonals within the band of A.  KL >= 0.
        !            43: *
        !            44: *  KU      (input) INTEGER
        !            45: *          The number of superdiagonals within the band of A.  KU >= 0.
        !            46: *
        !            47: *  NRHS    (input) INTEGER
        !            48: *          The number of right hand sides, i.e., the number of columns
        !            49: *          of the matrices B and X.  NRHS >= 0.
        !            50: *
        !            51: *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
        !            52: *          The original band matrix A, stored in rows 1 to KL+KU+1.
        !            53: *          The j-th column of A is stored in the j-th column of the
        !            54: *          array AB as follows:
        !            55: *          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
        !            56: *
        !            57: *  LDAB    (input) INTEGER
        !            58: *          The leading dimension of the array AB.  LDAB >= KL+KU+1.
        !            59: *
        !            60: *  AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N)
        !            61: *          Details of the LU factorization of the band matrix A, as
        !            62: *          computed by DGBTRF.  U is stored as an upper triangular band
        !            63: *          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
        !            64: *          the multipliers used during the factorization are stored in
        !            65: *          rows KL+KU+2 to 2*KL+KU+1.
        !            66: *
        !            67: *  LDAFB   (input) INTEGER
        !            68: *          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
        !            69: *
        !            70: *  IPIV    (input) INTEGER array, dimension (N)
        !            71: *          The pivot indices from DGBTRF; for 1<=i<=N, row i of the
        !            72: *          matrix was interchanged with row IPIV(i).
        !            73: *
        !            74: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !            75: *          The right hand side matrix B.
        !            76: *
        !            77: *  LDB     (input) INTEGER
        !            78: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            79: *
        !            80: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !            81: *          On entry, the solution matrix X, as computed by DGBTRS.
        !            82: *          On exit, the improved solution matrix X.
        !            83: *
        !            84: *  LDX     (input) INTEGER
        !            85: *          The leading dimension of the array X.  LDX >= max(1,N).
        !            86: *
        !            87: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !            88: *          The estimated forward error bound for each solution vector
        !            89: *          X(j) (the j-th column of the solution matrix X).
        !            90: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !            91: *          is an estimated upper bound for the magnitude of the largest
        !            92: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !            93: *          largest element in X(j).  The estimate is as reliable as
        !            94: *          the estimate for RCOND, and is almost always a slight
        !            95: *          overestimate of the true error.
        !            96: *
        !            97: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !            98: *          The componentwise relative backward error of each solution
        !            99: *          vector X(j) (i.e., the smallest relative change in
        !           100: *          any element of A or B that makes X(j) an exact solution).
        !           101: *
        !           102: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
        !           103: *
        !           104: *  IWORK   (workspace) INTEGER array, dimension (N)
        !           105: *
        !           106: *  INFO    (output) INTEGER
        !           107: *          = 0:  successful exit
        !           108: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           109: *
        !           110: *  Internal Parameters
        !           111: *  ===================
        !           112: *
        !           113: *  ITMAX is the maximum number of steps of iterative refinement.
        !           114: *
        !           115: *  =====================================================================
        !           116: *
        !           117: *     .. Parameters ..
        !           118:       INTEGER            ITMAX
        !           119:       PARAMETER          ( ITMAX = 5 )
        !           120:       DOUBLE PRECISION   ZERO
        !           121:       PARAMETER          ( ZERO = 0.0D+0 )
        !           122:       DOUBLE PRECISION   ONE
        !           123:       PARAMETER          ( ONE = 1.0D+0 )
        !           124:       DOUBLE PRECISION   TWO
        !           125:       PARAMETER          ( TWO = 2.0D+0 )
        !           126:       DOUBLE PRECISION   THREE
        !           127:       PARAMETER          ( THREE = 3.0D+0 )
        !           128: *     ..
        !           129: *     .. Local Scalars ..
        !           130:       LOGICAL            NOTRAN
        !           131:       CHARACTER          TRANST
        !           132:       INTEGER            COUNT, I, J, K, KASE, KK, NZ
        !           133:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
        !           134: *     ..
        !           135: *     .. Local Arrays ..
        !           136:       INTEGER            ISAVE( 3 )
        !           137: *     ..
        !           138: *     .. External Subroutines ..
        !           139:       EXTERNAL           DAXPY, DCOPY, DGBMV, DGBTRS, DLACN2, XERBLA
        !           140: *     ..
        !           141: *     .. Intrinsic Functions ..
        !           142:       INTRINSIC          ABS, MAX, MIN
        !           143: *     ..
        !           144: *     .. External Functions ..
        !           145:       LOGICAL            LSAME
        !           146:       DOUBLE PRECISION   DLAMCH
        !           147:       EXTERNAL           LSAME, DLAMCH
        !           148: *     ..
        !           149: *     .. Executable Statements ..
        !           150: *
        !           151: *     Test the input parameters.
        !           152: *
        !           153:       INFO = 0
        !           154:       NOTRAN = LSAME( TRANS, 'N' )
        !           155:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
        !           156:      $    LSAME( TRANS, 'C' ) ) THEN
        !           157:          INFO = -1
        !           158:       ELSE IF( N.LT.0 ) THEN
        !           159:          INFO = -2
        !           160:       ELSE IF( KL.LT.0 ) THEN
        !           161:          INFO = -3
        !           162:       ELSE IF( KU.LT.0 ) THEN
        !           163:          INFO = -4
        !           164:       ELSE IF( NRHS.LT.0 ) THEN
        !           165:          INFO = -5
        !           166:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
        !           167:          INFO = -7
        !           168:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
        !           169:          INFO = -9
        !           170:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           171:          INFO = -12
        !           172:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           173:          INFO = -14
        !           174:       END IF
        !           175:       IF( INFO.NE.0 ) THEN
        !           176:          CALL XERBLA( 'DGBRFS', -INFO )
        !           177:          RETURN
        !           178:       END IF
        !           179: *
        !           180: *     Quick return if possible
        !           181: *
        !           182:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
        !           183:          DO 10 J = 1, NRHS
        !           184:             FERR( J ) = ZERO
        !           185:             BERR( J ) = ZERO
        !           186:    10    CONTINUE
        !           187:          RETURN
        !           188:       END IF
        !           189: *
        !           190:       IF( NOTRAN ) THEN
        !           191:          TRANST = 'T'
        !           192:       ELSE
        !           193:          TRANST = 'N'
        !           194:       END IF
        !           195: *
        !           196: *     NZ = maximum number of nonzero elements in each row of A, plus 1
        !           197: *
        !           198:       NZ = MIN( KL+KU+2, N+1 )
        !           199:       EPS = DLAMCH( 'Epsilon' )
        !           200:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           201:       SAFE1 = NZ*SAFMIN
        !           202:       SAFE2 = SAFE1 / EPS
        !           203: *
        !           204: *     Do for each right hand side
        !           205: *
        !           206:       DO 140 J = 1, NRHS
        !           207: *
        !           208:          COUNT = 1
        !           209:          LSTRES = THREE
        !           210:    20    CONTINUE
        !           211: *
        !           212: *        Loop until stopping criterion is satisfied.
        !           213: *
        !           214: *        Compute residual R = B - op(A) * X,
        !           215: *        where op(A) = A, A**T, or A**H, depending on TRANS.
        !           216: *
        !           217:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
        !           218:          CALL DGBMV( TRANS, N, N, KL, KU, -ONE, AB, LDAB, X( 1, J ), 1,
        !           219:      $               ONE, WORK( N+1 ), 1 )
        !           220: *
        !           221: *        Compute componentwise relative backward error from formula
        !           222: *
        !           223: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
        !           224: *
        !           225: *        where abs(Z) is the componentwise absolute value of the matrix
        !           226: *        or vector Z.  If the i-th component of the denominator is less
        !           227: *        than SAFE2, then SAFE1 is added to the i-th components of the
        !           228: *        numerator and denominator before dividing.
        !           229: *
        !           230:          DO 30 I = 1, N
        !           231:             WORK( I ) = ABS( B( I, J ) )
        !           232:    30    CONTINUE
        !           233: *
        !           234: *        Compute abs(op(A))*abs(X) + abs(B).
        !           235: *
        !           236:          IF( NOTRAN ) THEN
        !           237:             DO 50 K = 1, N
        !           238:                KK = KU + 1 - K
        !           239:                XK = ABS( X( K, J ) )
        !           240:                DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
        !           241:                   WORK( I ) = WORK( I ) + ABS( AB( KK+I, K ) )*XK
        !           242:    40          CONTINUE
        !           243:    50       CONTINUE
        !           244:          ELSE
        !           245:             DO 70 K = 1, N
        !           246:                S = ZERO
        !           247:                KK = KU + 1 - K
        !           248:                DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
        !           249:                   S = S + ABS( AB( KK+I, K ) )*ABS( X( I, J ) )
        !           250:    60          CONTINUE
        !           251:                WORK( K ) = WORK( K ) + S
        !           252:    70       CONTINUE
        !           253:          END IF
        !           254:          S = ZERO
        !           255:          DO 80 I = 1, N
        !           256:             IF( WORK( I ).GT.SAFE2 ) THEN
        !           257:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
        !           258:             ELSE
        !           259:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
        !           260:      $             ( WORK( I )+SAFE1 ) )
        !           261:             END IF
        !           262:    80    CONTINUE
        !           263:          BERR( J ) = S
        !           264: *
        !           265: *        Test stopping criterion. Continue iterating if
        !           266: *           1) The residual BERR(J) is larger than machine epsilon, and
        !           267: *           2) BERR(J) decreased by at least a factor of 2 during the
        !           268: *              last iteration, and
        !           269: *           3) At most ITMAX iterations tried.
        !           270: *
        !           271:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
        !           272:      $       COUNT.LE.ITMAX ) THEN
        !           273: *
        !           274: *           Update solution and try again.
        !           275: *
        !           276:             CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
        !           277:      $                   WORK( N+1 ), N, INFO )
        !           278:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
        !           279:             LSTRES = BERR( J )
        !           280:             COUNT = COUNT + 1
        !           281:             GO TO 20
        !           282:          END IF
        !           283: *
        !           284: *        Bound error from formula
        !           285: *
        !           286: *        norm(X - XTRUE) / norm(X) .le. FERR =
        !           287: *        norm( abs(inv(op(A)))*
        !           288: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
        !           289: *
        !           290: *        where
        !           291: *          norm(Z) is the magnitude of the largest component of Z
        !           292: *          inv(op(A)) is the inverse of op(A)
        !           293: *          abs(Z) is the componentwise absolute value of the matrix or
        !           294: *             vector Z
        !           295: *          NZ is the maximum number of nonzeros in any row of A, plus 1
        !           296: *          EPS is machine epsilon
        !           297: *
        !           298: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
        !           299: *        is incremented by SAFE1 if the i-th component of
        !           300: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
        !           301: *
        !           302: *        Use DLACN2 to estimate the infinity-norm of the matrix
        !           303: *           inv(op(A)) * diag(W),
        !           304: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
        !           305: *
        !           306:          DO 90 I = 1, N
        !           307:             IF( WORK( I ).GT.SAFE2 ) THEN
        !           308:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
        !           309:             ELSE
        !           310:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
        !           311:             END IF
        !           312:    90    CONTINUE
        !           313: *
        !           314:          KASE = 0
        !           315:   100    CONTINUE
        !           316:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
        !           317:      $                KASE, ISAVE )
        !           318:          IF( KASE.NE.0 ) THEN
        !           319:             IF( KASE.EQ.1 ) THEN
        !           320: *
        !           321: *              Multiply by diag(W)*inv(op(A)**T).
        !           322: *
        !           323:                CALL DGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
        !           324:      $                      WORK( N+1 ), N, INFO )
        !           325:                DO 110 I = 1, N
        !           326:                   WORK( N+I ) = WORK( N+I )*WORK( I )
        !           327:   110          CONTINUE
        !           328:             ELSE
        !           329: *
        !           330: *              Multiply by inv(op(A))*diag(W).
        !           331: *
        !           332:                DO 120 I = 1, N
        !           333:                   WORK( N+I ) = WORK( N+I )*WORK( I )
        !           334:   120          CONTINUE
        !           335:                CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
        !           336:      $                      WORK( N+1 ), N, INFO )
        !           337:             END IF
        !           338:             GO TO 100
        !           339:          END IF
        !           340: *
        !           341: *        Normalize error.
        !           342: *
        !           343:          LSTRES = ZERO
        !           344:          DO 130 I = 1, N
        !           345:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
        !           346:   130    CONTINUE
        !           347:          IF( LSTRES.NE.ZERO )
        !           348:      $      FERR( J ) = FERR( J ) / LSTRES
        !           349: *
        !           350:   140 CONTINUE
        !           351: *
        !           352:       RETURN
        !           353: *
        !           354: *     End of DGBRFS
        !           355: *
        !           356:       END

CVSweb interface <joel.bertrand@systella.fr>