File:  [local] / rpl / lapack / lapack / dbdsqr.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:47 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DBDSQR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DBDSQR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsqr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsqr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsqr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
   22: *                          LDU, C, LDC, WORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
   30: *      $                   VT( LDVT, * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DBDSQR computes the singular values and, optionally, the right and/or
   40: *> left singular vectors from the singular value decomposition (SVD) of
   41: *> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
   42: *> zero-shift QR algorithm.  The SVD of B has the form
   43: *>
   44: *>    B = Q * S * P**T
   45: *>
   46: *> where S is the diagonal matrix of singular values, Q is an orthogonal
   47: *> matrix of left singular vectors, and P is an orthogonal matrix of
   48: *> right singular vectors.  If left singular vectors are requested, this
   49: *> subroutine actually returns U*Q instead of Q, and, if right singular
   50: *> vectors are requested, this subroutine returns P**T*VT instead of
   51: *> P**T, for given real input matrices U and VT.  When U and VT are the
   52: *> orthogonal matrices that reduce a general matrix A to bidiagonal
   53: *> form:  A = U*B*VT, as computed by DGEBRD, then
   54: *>
   55: *>    A = (U*Q) * S * (P**T*VT)
   56: *>
   57: *> is the SVD of A.  Optionally, the subroutine may also compute Q**T*C
   58: *> for a given real input matrix C.
   59: *>
   60: *> See "Computing  Small Singular Values of Bidiagonal Matrices With
   61: *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
   62: *> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
   63: *> no. 5, pp. 873-912, Sept 1990) and
   64: *> "Accurate singular values and differential qd algorithms," by
   65: *> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
   66: *> Department, University of California at Berkeley, July 1992
   67: *> for a detailed description of the algorithm.
   68: *> \endverbatim
   69: *
   70: *  Arguments:
   71: *  ==========
   72: *
   73: *> \param[in] UPLO
   74: *> \verbatim
   75: *>          UPLO is CHARACTER*1
   76: *>          = 'U':  B is upper bidiagonal;
   77: *>          = 'L':  B is lower bidiagonal.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The order of the matrix B.  N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NCVT
   87: *> \verbatim
   88: *>          NCVT is INTEGER
   89: *>          The number of columns of the matrix VT. NCVT >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] NRU
   93: *> \verbatim
   94: *>          NRU is INTEGER
   95: *>          The number of rows of the matrix U. NRU >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] NCC
   99: *> \verbatim
  100: *>          NCC is INTEGER
  101: *>          The number of columns of the matrix C. NCC >= 0.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] D
  105: *> \verbatim
  106: *>          D is DOUBLE PRECISION array, dimension (N)
  107: *>          On entry, the n diagonal elements of the bidiagonal matrix B.
  108: *>          On exit, if INFO=0, the singular values of B in decreasing
  109: *>          order.
  110: *> \endverbatim
  111: *>
  112: *> \param[in,out] E
  113: *> \verbatim
  114: *>          E is DOUBLE PRECISION array, dimension (N-1)
  115: *>          On entry, the N-1 offdiagonal elements of the bidiagonal
  116: *>          matrix B.
  117: *>          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
  118: *>          will contain the diagonal and superdiagonal elements of a
  119: *>          bidiagonal matrix orthogonally equivalent to the one given
  120: *>          as input.
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] VT
  124: *> \verbatim
  125: *>          VT is DOUBLE PRECISION array, dimension (LDVT, NCVT)
  126: *>          On entry, an N-by-NCVT matrix VT.
  127: *>          On exit, VT is overwritten by P**T * VT.
  128: *>          Not referenced if NCVT = 0.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDVT
  132: *> \verbatim
  133: *>          LDVT is INTEGER
  134: *>          The leading dimension of the array VT.
  135: *>          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] U
  139: *> \verbatim
  140: *>          U is DOUBLE PRECISION array, dimension (LDU, N)
  141: *>          On entry, an NRU-by-N matrix U.
  142: *>          On exit, U is overwritten by U * Q.
  143: *>          Not referenced if NRU = 0.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDU
  147: *> \verbatim
  148: *>          LDU is INTEGER
  149: *>          The leading dimension of the array U.  LDU >= max(1,NRU).
  150: *> \endverbatim
  151: *>
  152: *> \param[in,out] C
  153: *> \verbatim
  154: *>          C is DOUBLE PRECISION array, dimension (LDC, NCC)
  155: *>          On entry, an N-by-NCC matrix C.
  156: *>          On exit, C is overwritten by Q**T * C.
  157: *>          Not referenced if NCC = 0.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] LDC
  161: *> \verbatim
  162: *>          LDC is INTEGER
  163: *>          The leading dimension of the array C.
  164: *>          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] WORK
  168: *> \verbatim
  169: *>          WORK is DOUBLE PRECISION array, dimension (4*(N-1))
  170: *> \endverbatim
  171: *>
  172: *> \param[out] INFO
  173: *> \verbatim
  174: *>          INFO is INTEGER
  175: *>          = 0:  successful exit
  176: *>          < 0:  If INFO = -i, the i-th argument had an illegal value
  177: *>          > 0:
  178: *>             if NCVT = NRU = NCC = 0,
  179: *>                = 1, a split was marked by a positive value in E
  180: *>                = 2, current block of Z not diagonalized after 30*N
  181: *>                     iterations (in inner while loop)
  182: *>                = 3, termination criterion of outer while loop not met
  183: *>                     (program created more than N unreduced blocks)
  184: *>             else NCVT = NRU = NCC = 0,
  185: *>                   the algorithm did not converge; D and E contain the
  186: *>                   elements of a bidiagonal matrix which is orthogonally
  187: *>                   similar to the input matrix B;  if INFO = i, i
  188: *>                   elements of E have not converged to zero.
  189: *> \endverbatim
  190: *
  191: *> \par Internal Parameters:
  192: *  =========================
  193: *>
  194: *> \verbatim
  195: *>  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
  196: *>          TOLMUL controls the convergence criterion of the QR loop.
  197: *>          If it is positive, TOLMUL*EPS is the desired relative
  198: *>             precision in the computed singular values.
  199: *>          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
  200: *>             desired absolute accuracy in the computed singular
  201: *>             values (corresponds to relative accuracy
  202: *>             abs(TOLMUL*EPS) in the largest singular value.
  203: *>          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
  204: *>             between 10 (for fast convergence) and .1/EPS
  205: *>             (for there to be some accuracy in the results).
  206: *>          Default is to lose at either one eighth or 2 of the
  207: *>             available decimal digits in each computed singular value
  208: *>             (whichever is smaller).
  209: *>
  210: *>  MAXITR  INTEGER, default = 6
  211: *>          MAXITR controls the maximum number of passes of the
  212: *>          algorithm through its inner loop. The algorithms stops
  213: *>          (and so fails to converge) if the number of passes
  214: *>          through the inner loop exceeds MAXITR*N**2.
  215: *>
  216: *> \endverbatim
  217: *
  218: *> \par Note:
  219: *  ===========
  220: *>
  221: *> \verbatim
  222: *>  Bug report from Cezary Dendek.
  223: *>  On March 23rd 2017, the INTEGER variable MAXIT = MAXITR*N**2 is
  224: *>  removed since it can overflow pretty easily (for N larger or equal
  225: *>  than 18,919). We instead use MAXITDIVN = MAXITR*N.
  226: *> \endverbatim
  227: *
  228: *  Authors:
  229: *  ========
  230: *
  231: *> \author Univ. of Tennessee
  232: *> \author Univ. of California Berkeley
  233: *> \author Univ. of Colorado Denver
  234: *> \author NAG Ltd.
  235: *
  236: *> \ingroup auxOTHERcomputational
  237: *
  238: *  =====================================================================
  239:       SUBROUTINE DBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
  240:      $                   LDU, C, LDC, WORK, INFO )
  241: *
  242: *  -- LAPACK computational routine --
  243: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  244: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  245: *
  246: *     .. Scalar Arguments ..
  247:       CHARACTER          UPLO
  248:       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
  249: *     ..
  250: *     .. Array Arguments ..
  251:       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
  252:      $                   VT( LDVT, * ), WORK( * )
  253: *     ..
  254: *
  255: *  =====================================================================
  256: *
  257: *     .. Parameters ..
  258:       DOUBLE PRECISION   ZERO
  259:       PARAMETER          ( ZERO = 0.0D0 )
  260:       DOUBLE PRECISION   ONE
  261:       PARAMETER          ( ONE = 1.0D0 )
  262:       DOUBLE PRECISION   NEGONE
  263:       PARAMETER          ( NEGONE = -1.0D0 )
  264:       DOUBLE PRECISION   HNDRTH
  265:       PARAMETER          ( HNDRTH = 0.01D0 )
  266:       DOUBLE PRECISION   TEN
  267:       PARAMETER          ( TEN = 10.0D0 )
  268:       DOUBLE PRECISION   HNDRD
  269:       PARAMETER          ( HNDRD = 100.0D0 )
  270:       DOUBLE PRECISION   MEIGTH
  271:       PARAMETER          ( MEIGTH = -0.125D0 )
  272:       INTEGER            MAXITR
  273:       PARAMETER          ( MAXITR = 6 )
  274: *     ..
  275: *     .. Local Scalars ..
  276:       LOGICAL            LOWER, ROTATE
  277:       INTEGER            I, IDIR, ISUB, ITER, ITERDIVN, J, LL, LLL, M,
  278:      $                   MAXITDIVN, NM1, NM12, NM13, OLDLL, OLDM
  279:       DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
  280:      $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
  281:      $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
  282:      $                   SN, THRESH, TOL, TOLMUL, UNFL
  283: *     ..
  284: *     .. External Functions ..
  285:       LOGICAL            LSAME
  286:       DOUBLE PRECISION   DLAMCH
  287:       EXTERNAL           LSAME, DLAMCH
  288: *     ..
  289: *     .. External Subroutines ..
  290:       EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASR, DLASV2, DROT,
  291:      $                   DSCAL, DSWAP, XERBLA
  292: *     ..
  293: *     .. Intrinsic Functions ..
  294:       INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
  295: *     ..
  296: *     .. Executable Statements ..
  297: *
  298: *     Test the input parameters.
  299: *
  300:       INFO = 0
  301:       LOWER = LSAME( UPLO, 'L' )
  302:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
  303:          INFO = -1
  304:       ELSE IF( N.LT.0 ) THEN
  305:          INFO = -2
  306:       ELSE IF( NCVT.LT.0 ) THEN
  307:          INFO = -3
  308:       ELSE IF( NRU.LT.0 ) THEN
  309:          INFO = -4
  310:       ELSE IF( NCC.LT.0 ) THEN
  311:          INFO = -5
  312:       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
  313:      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
  314:          INFO = -9
  315:       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
  316:          INFO = -11
  317:       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
  318:      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
  319:          INFO = -13
  320:       END IF
  321:       IF( INFO.NE.0 ) THEN
  322:          CALL XERBLA( 'DBDSQR', -INFO )
  323:          RETURN
  324:       END IF
  325:       IF( N.EQ.0 )
  326:      $   RETURN
  327:       IF( N.EQ.1 )
  328:      $   GO TO 160
  329: *
  330: *     ROTATE is true if any singular vectors desired, false otherwise
  331: *
  332:       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
  333: *
  334: *     If no singular vectors desired, use qd algorithm
  335: *
  336:       IF( .NOT.ROTATE ) THEN
  337:          CALL DLASQ1( N, D, E, WORK, INFO )
  338: *
  339: *     If INFO equals 2, dqds didn't finish, try to finish
  340: *
  341:          IF( INFO .NE. 2 ) RETURN
  342:          INFO = 0
  343:       END IF
  344: *
  345:       NM1 = N - 1
  346:       NM12 = NM1 + NM1
  347:       NM13 = NM12 + NM1
  348:       IDIR = 0
  349: *
  350: *     Get machine constants
  351: *
  352:       EPS = DLAMCH( 'Epsilon' )
  353:       UNFL = DLAMCH( 'Safe minimum' )
  354: *
  355: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
  356: *     by applying Givens rotations on the left
  357: *
  358:       IF( LOWER ) THEN
  359:          DO 10 I = 1, N - 1
  360:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  361:             D( I ) = R
  362:             E( I ) = SN*D( I+1 )
  363:             D( I+1 ) = CS*D( I+1 )
  364:             WORK( I ) = CS
  365:             WORK( NM1+I ) = SN
  366:    10    CONTINUE
  367: *
  368: *        Update singular vectors if desired
  369: *
  370:          IF( NRU.GT.0 )
  371:      $      CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ), WORK( N ), U,
  372:      $                  LDU )
  373:          IF( NCC.GT.0 )
  374:      $      CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ), WORK( N ), C,
  375:      $                  LDC )
  376:       END IF
  377: *
  378: *     Compute singular values to relative accuracy TOL
  379: *     (By setting TOL to be negative, algorithm will compute
  380: *     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
  381: *
  382:       TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
  383:       TOL = TOLMUL*EPS
  384: *
  385: *     Compute approximate maximum, minimum singular values
  386: *
  387:       SMAX = ZERO
  388:       DO 20 I = 1, N
  389:          SMAX = MAX( SMAX, ABS( D( I ) ) )
  390:    20 CONTINUE
  391:       DO 30 I = 1, N - 1
  392:          SMAX = MAX( SMAX, ABS( E( I ) ) )
  393:    30 CONTINUE
  394:       SMINL = ZERO
  395:       IF( TOL.GE.ZERO ) THEN
  396: *
  397: *        Relative accuracy desired
  398: *
  399:          SMINOA = ABS( D( 1 ) )
  400:          IF( SMINOA.EQ.ZERO )
  401:      $      GO TO 50
  402:          MU = SMINOA
  403:          DO 40 I = 2, N
  404:             MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
  405:             SMINOA = MIN( SMINOA, MU )
  406:             IF( SMINOA.EQ.ZERO )
  407:      $         GO TO 50
  408:    40    CONTINUE
  409:    50    CONTINUE
  410:          SMINOA = SMINOA / SQRT( DBLE( N ) )
  411:          THRESH = MAX( TOL*SMINOA, MAXITR*(N*(N*UNFL)) )
  412:       ELSE
  413: *
  414: *        Absolute accuracy desired
  415: *
  416:          THRESH = MAX( ABS( TOL )*SMAX, MAXITR*(N*(N*UNFL)) )
  417:       END IF
  418: *
  419: *     Prepare for main iteration loop for the singular values
  420: *     (MAXIT is the maximum number of passes through the inner
  421: *     loop permitted before nonconvergence signalled.)
  422: *
  423:       MAXITDIVN = MAXITR*N
  424:       ITERDIVN = 0
  425:       ITER = -1
  426:       OLDLL = -1
  427:       OLDM = -1
  428: *
  429: *     M points to last element of unconverged part of matrix
  430: *
  431:       M = N
  432: *
  433: *     Begin main iteration loop
  434: *
  435:    60 CONTINUE
  436: *
  437: *     Check for convergence or exceeding iteration count
  438: *
  439:       IF( M.LE.1 )
  440:      $   GO TO 160
  441: *
  442:       IF( ITER.GE.N ) THEN
  443:          ITER = ITER - N
  444:          ITERDIVN = ITERDIVN + 1
  445:          IF( ITERDIVN.GE.MAXITDIVN )
  446:      $      GO TO 200
  447:       END IF
  448: *
  449: *     Find diagonal block of matrix to work on
  450: *
  451:       IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
  452:      $   D( M ) = ZERO
  453:       SMAX = ABS( D( M ) )
  454:       SMIN = SMAX
  455:       DO 70 LLL = 1, M - 1
  456:          LL = M - LLL
  457:          ABSS = ABS( D( LL ) )
  458:          ABSE = ABS( E( LL ) )
  459:          IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
  460:      $      D( LL ) = ZERO
  461:          IF( ABSE.LE.THRESH )
  462:      $      GO TO 80
  463:          SMIN = MIN( SMIN, ABSS )
  464:          SMAX = MAX( SMAX, ABSS, ABSE )
  465:    70 CONTINUE
  466:       LL = 0
  467:       GO TO 90
  468:    80 CONTINUE
  469:       E( LL ) = ZERO
  470: *
  471: *     Matrix splits since E(LL) = 0
  472: *
  473:       IF( LL.EQ.M-1 ) THEN
  474: *
  475: *        Convergence of bottom singular value, return to top of loop
  476: *
  477:          M = M - 1
  478:          GO TO 60
  479:       END IF
  480:    90 CONTINUE
  481:       LL = LL + 1
  482: *
  483: *     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
  484: *
  485:       IF( LL.EQ.M-1 ) THEN
  486: *
  487: *        2 by 2 block, handle separately
  488: *
  489:          CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
  490:      $                COSR, SINL, COSL )
  491:          D( M-1 ) = SIGMX
  492:          E( M-1 ) = ZERO
  493:          D( M ) = SIGMN
  494: *
  495: *        Compute singular vectors, if desired
  496: *
  497:          IF( NCVT.GT.0 )
  498:      $      CALL DROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT, COSR,
  499:      $                 SINR )
  500:          IF( NRU.GT.0 )
  501:      $      CALL DROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
  502:          IF( NCC.GT.0 )
  503:      $      CALL DROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
  504:      $                 SINL )
  505:          M = M - 2
  506:          GO TO 60
  507:       END IF
  508: *
  509: *     If working on new submatrix, choose shift direction
  510: *     (from larger end diagonal element towards smaller)
  511: *
  512:       IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
  513:          IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
  514: *
  515: *           Chase bulge from top (big end) to bottom (small end)
  516: *
  517:             IDIR = 1
  518:          ELSE
  519: *
  520: *           Chase bulge from bottom (big end) to top (small end)
  521: *
  522:             IDIR = 2
  523:          END IF
  524:       END IF
  525: *
  526: *     Apply convergence tests
  527: *
  528:       IF( IDIR.EQ.1 ) THEN
  529: *
  530: *        Run convergence test in forward direction
  531: *        First apply standard test to bottom of matrix
  532: *
  533:          IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
  534:      $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
  535:             E( M-1 ) = ZERO
  536:             GO TO 60
  537:          END IF
  538: *
  539:          IF( TOL.GE.ZERO ) THEN
  540: *
  541: *           If relative accuracy desired,
  542: *           apply convergence criterion forward
  543: *
  544:             MU = ABS( D( LL ) )
  545:             SMINL = MU
  546:             DO 100 LLL = LL, M - 1
  547:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  548:                   E( LLL ) = ZERO
  549:                   GO TO 60
  550:                END IF
  551:                MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  552:                SMINL = MIN( SMINL, MU )
  553:   100       CONTINUE
  554:          END IF
  555: *
  556:       ELSE
  557: *
  558: *        Run convergence test in backward direction
  559: *        First apply standard test to top of matrix
  560: *
  561:          IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
  562:      $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
  563:             E( LL ) = ZERO
  564:             GO TO 60
  565:          END IF
  566: *
  567:          IF( TOL.GE.ZERO ) THEN
  568: *
  569: *           If relative accuracy desired,
  570: *           apply convergence criterion backward
  571: *
  572:             MU = ABS( D( M ) )
  573:             SMINL = MU
  574:             DO 110 LLL = M - 1, LL, -1
  575:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  576:                   E( LLL ) = ZERO
  577:                   GO TO 60
  578:                END IF
  579:                MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  580:                SMINL = MIN( SMINL, MU )
  581:   110       CONTINUE
  582:          END IF
  583:       END IF
  584:       OLDLL = LL
  585:       OLDM = M
  586: *
  587: *     Compute shift.  First, test if shifting would ruin relative
  588: *     accuracy, and if so set the shift to zero.
  589: *
  590:       IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
  591:      $    MAX( EPS, HNDRTH*TOL ) ) THEN
  592: *
  593: *        Use a zero shift to avoid loss of relative accuracy
  594: *
  595:          SHIFT = ZERO
  596:       ELSE
  597: *
  598: *        Compute the shift from 2-by-2 block at end of matrix
  599: *
  600:          IF( IDIR.EQ.1 ) THEN
  601:             SLL = ABS( D( LL ) )
  602:             CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
  603:          ELSE
  604:             SLL = ABS( D( M ) )
  605:             CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
  606:          END IF
  607: *
  608: *        Test if shift negligible, and if so set to zero
  609: *
  610:          IF( SLL.GT.ZERO ) THEN
  611:             IF( ( SHIFT / SLL )**2.LT.EPS )
  612:      $         SHIFT = ZERO
  613:          END IF
  614:       END IF
  615: *
  616: *     Increment iteration count
  617: *
  618:       ITER = ITER + M - LL
  619: *
  620: *     If SHIFT = 0, do simplified QR iteration
  621: *
  622:       IF( SHIFT.EQ.ZERO ) THEN
  623:          IF( IDIR.EQ.1 ) THEN
  624: *
  625: *           Chase bulge from top to bottom
  626: *           Save cosines and sines for later singular vector updates
  627: *
  628:             CS = ONE
  629:             OLDCS = ONE
  630:             DO 120 I = LL, M - 1
  631:                CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
  632:                IF( I.GT.LL )
  633:      $            E( I-1 ) = OLDSN*R
  634:                CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
  635:                WORK( I-LL+1 ) = CS
  636:                WORK( I-LL+1+NM1 ) = SN
  637:                WORK( I-LL+1+NM12 ) = OLDCS
  638:                WORK( I-LL+1+NM13 ) = OLDSN
  639:   120       CONTINUE
  640:             H = D( M )*CS
  641:             D( M ) = H*OLDCS
  642:             E( M-1 ) = H*OLDSN
  643: *
  644: *           Update singular vectors
  645: *
  646:             IF( NCVT.GT.0 )
  647:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ),
  648:      $                     WORK( N ), VT( LL, 1 ), LDVT )
  649:             IF( NRU.GT.0 )
  650:      $         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ),
  651:      $                     WORK( NM13+1 ), U( 1, LL ), LDU )
  652:             IF( NCC.GT.0 )
  653:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ),
  654:      $                     WORK( NM13+1 ), C( LL, 1 ), LDC )
  655: *
  656: *           Test convergence
  657: *
  658:             IF( ABS( E( M-1 ) ).LE.THRESH )
  659:      $         E( M-1 ) = ZERO
  660: *
  661:          ELSE
  662: *
  663: *           Chase bulge from bottom to top
  664: *           Save cosines and sines for later singular vector updates
  665: *
  666:             CS = ONE
  667:             OLDCS = ONE
  668:             DO 130 I = M, LL + 1, -1
  669:                CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
  670:                IF( I.LT.M )
  671:      $            E( I ) = OLDSN*R
  672:                CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
  673:                WORK( I-LL ) = CS
  674:                WORK( I-LL+NM1 ) = -SN
  675:                WORK( I-LL+NM12 ) = OLDCS
  676:                WORK( I-LL+NM13 ) = -OLDSN
  677:   130       CONTINUE
  678:             H = D( LL )*CS
  679:             D( LL ) = H*OLDCS
  680:             E( LL ) = H*OLDSN
  681: *
  682: *           Update singular vectors
  683: *
  684:             IF( NCVT.GT.0 )
  685:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ),
  686:      $                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
  687:             IF( NRU.GT.0 )
  688:      $         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ),
  689:      $                     WORK( N ), U( 1, LL ), LDU )
  690:             IF( NCC.GT.0 )
  691:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ),
  692:      $                     WORK( N ), C( LL, 1 ), LDC )
  693: *
  694: *           Test convergence
  695: *
  696:             IF( ABS( E( LL ) ).LE.THRESH )
  697:      $         E( LL ) = ZERO
  698:          END IF
  699:       ELSE
  700: *
  701: *        Use nonzero shift
  702: *
  703:          IF( IDIR.EQ.1 ) THEN
  704: *
  705: *           Chase bulge from top to bottom
  706: *           Save cosines and sines for later singular vector updates
  707: *
  708:             F = ( ABS( D( LL ) )-SHIFT )*
  709:      $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
  710:             G = E( LL )
  711:             DO 140 I = LL, M - 1
  712:                CALL DLARTG( F, G, COSR, SINR, R )
  713:                IF( I.GT.LL )
  714:      $            E( I-1 ) = R
  715:                F = COSR*D( I ) + SINR*E( I )
  716:                E( I ) = COSR*E( I ) - SINR*D( I )
  717:                G = SINR*D( I+1 )
  718:                D( I+1 ) = COSR*D( I+1 )
  719:                CALL DLARTG( F, G, COSL, SINL, R )
  720:                D( I ) = R
  721:                F = COSL*E( I ) + SINL*D( I+1 )
  722:                D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
  723:                IF( I.LT.M-1 ) THEN
  724:                   G = SINL*E( I+1 )
  725:                   E( I+1 ) = COSL*E( I+1 )
  726:                END IF
  727:                WORK( I-LL+1 ) = COSR
  728:                WORK( I-LL+1+NM1 ) = SINR
  729:                WORK( I-LL+1+NM12 ) = COSL
  730:                WORK( I-LL+1+NM13 ) = SINL
  731:   140       CONTINUE
  732:             E( M-1 ) = F
  733: *
  734: *           Update singular vectors
  735: *
  736:             IF( NCVT.GT.0 )
  737:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ),
  738:      $                     WORK( N ), VT( LL, 1 ), LDVT )
  739:             IF( NRU.GT.0 )
  740:      $         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ),
  741:      $                     WORK( NM13+1 ), U( 1, LL ), LDU )
  742:             IF( NCC.GT.0 )
  743:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ),
  744:      $                     WORK( NM13+1 ), C( LL, 1 ), LDC )
  745: *
  746: *           Test convergence
  747: *
  748:             IF( ABS( E( M-1 ) ).LE.THRESH )
  749:      $         E( M-1 ) = ZERO
  750: *
  751:          ELSE
  752: *
  753: *           Chase bulge from bottom to top
  754: *           Save cosines and sines for later singular vector updates
  755: *
  756:             F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
  757:      $          D( M ) )
  758:             G = E( M-1 )
  759:             DO 150 I = M, LL + 1, -1
  760:                CALL DLARTG( F, G, COSR, SINR, R )
  761:                IF( I.LT.M )
  762:      $            E( I ) = R
  763:                F = COSR*D( I ) + SINR*E( I-1 )
  764:                E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
  765:                G = SINR*D( I-1 )
  766:                D( I-1 ) = COSR*D( I-1 )
  767:                CALL DLARTG( F, G, COSL, SINL, R )
  768:                D( I ) = R
  769:                F = COSL*E( I-1 ) + SINL*D( I-1 )
  770:                D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
  771:                IF( I.GT.LL+1 ) THEN
  772:                   G = SINL*E( I-2 )
  773:                   E( I-2 ) = COSL*E( I-2 )
  774:                END IF
  775:                WORK( I-LL ) = COSR
  776:                WORK( I-LL+NM1 ) = -SINR
  777:                WORK( I-LL+NM12 ) = COSL
  778:                WORK( I-LL+NM13 ) = -SINL
  779:   150       CONTINUE
  780:             E( LL ) = F
  781: *
  782: *           Test convergence
  783: *
  784:             IF( ABS( E( LL ) ).LE.THRESH )
  785:      $         E( LL ) = ZERO
  786: *
  787: *           Update singular vectors if desired
  788: *
  789:             IF( NCVT.GT.0 )
  790:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ),
  791:      $                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
  792:             IF( NRU.GT.0 )
  793:      $         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ),
  794:      $                     WORK( N ), U( 1, LL ), LDU )
  795:             IF( NCC.GT.0 )
  796:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ),
  797:      $                     WORK( N ), C( LL, 1 ), LDC )
  798:          END IF
  799:       END IF
  800: *
  801: *     QR iteration finished, go back and check convergence
  802: *
  803:       GO TO 60
  804: *
  805: *     All singular values converged, so make them positive
  806: *
  807:   160 CONTINUE
  808:       DO 170 I = 1, N
  809:          IF( D( I ).LT.ZERO ) THEN
  810:             D( I ) = -D( I )
  811: *
  812: *           Change sign of singular vectors, if desired
  813: *
  814:             IF( NCVT.GT.0 )
  815:      $         CALL DSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
  816:          END IF
  817:   170 CONTINUE
  818: *
  819: *     Sort the singular values into decreasing order (insertion sort on
  820: *     singular values, but only one transposition per singular vector)
  821: *
  822:       DO 190 I = 1, N - 1
  823: *
  824: *        Scan for smallest D(I)
  825: *
  826:          ISUB = 1
  827:          SMIN = D( 1 )
  828:          DO 180 J = 2, N + 1 - I
  829:             IF( D( J ).LE.SMIN ) THEN
  830:                ISUB = J
  831:                SMIN = D( J )
  832:             END IF
  833:   180    CONTINUE
  834:          IF( ISUB.NE.N+1-I ) THEN
  835: *
  836: *           Swap singular values and vectors
  837: *
  838:             D( ISUB ) = D( N+1-I )
  839:             D( N+1-I ) = SMIN
  840:             IF( NCVT.GT.0 )
  841:      $         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
  842:      $                     LDVT )
  843:             IF( NRU.GT.0 )
  844:      $         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
  845:             IF( NCC.GT.0 )
  846:      $         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
  847:          END IF
  848:   190 CONTINUE
  849:       GO TO 220
  850: *
  851: *     Maximum number of iterations exceeded, failure to converge
  852: *
  853:   200 CONTINUE
  854:       INFO = 0
  855:       DO 210 I = 1, N - 1
  856:          IF( E( I ).NE.ZERO )
  857:      $      INFO = INFO + 1
  858:   210 CONTINUE
  859:   220 CONTINUE
  860:       RETURN
  861: *
  862: *     End of DBDSQR
  863: *
  864:       END

CVSweb interface <joel.bertrand@systella.fr>