File:  [local] / rpl / lapack / lapack / dbdsqr.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:43 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
    2:      $                   LDU, C, LDC, WORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     January 2007
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          UPLO
   11:       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
   15:      $                   VT( LDVT, * ), WORK( * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DBDSQR computes the singular values and, optionally, the right and/or
   22: *  left singular vectors from the singular value decomposition (SVD) of
   23: *  a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
   24: *  zero-shift QR algorithm.  The SVD of B has the form
   25:    26: *     B = Q * S * P**T
   27:    28: *  where S is the diagonal matrix of singular values, Q is an orthogonal
   29: *  matrix of left singular vectors, and P is an orthogonal matrix of
   30: *  right singular vectors.  If left singular vectors are requested, this
   31: *  subroutine actually returns U*Q instead of Q, and, if right singular
   32: *  vectors are requested, this subroutine returns P**T*VT instead of
   33: *  P**T, for given real input matrices U and VT.  When U and VT are the
   34: *  orthogonal matrices that reduce a general matrix A to bidiagonal
   35: *  form:  A = U*B*VT, as computed by DGEBRD, then
   36: *
   37: *     A = (U*Q) * S * (P**T*VT)
   38: *
   39: *  is the SVD of A.  Optionally, the subroutine may also compute Q**T*C
   40: *  for a given real input matrix C.
   41: *
   42: *  See "Computing  Small Singular Values of Bidiagonal Matrices With
   43: *  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
   44: *  LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
   45: *  no. 5, pp. 873-912, Sept 1990) and
   46: *  "Accurate singular values and differential qd algorithms," by
   47: *  B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
   48: *  Department, University of California at Berkeley, July 1992
   49: *  for a detailed description of the algorithm.
   50: *
   51: *  Arguments
   52: *  =========
   53: *
   54: *  UPLO    (input) CHARACTER*1
   55: *          = 'U':  B is upper bidiagonal;
   56: *          = 'L':  B is lower bidiagonal.
   57: *
   58: *  N       (input) INTEGER
   59: *          The order of the matrix B.  N >= 0.
   60: *
   61: *  NCVT    (input) INTEGER
   62: *          The number of columns of the matrix VT. NCVT >= 0.
   63: *
   64: *  NRU     (input) INTEGER
   65: *          The number of rows of the matrix U. NRU >= 0.
   66: *
   67: *  NCC     (input) INTEGER
   68: *          The number of columns of the matrix C. NCC >= 0.
   69: *
   70: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
   71: *          On entry, the n diagonal elements of the bidiagonal matrix B.
   72: *          On exit, if INFO=0, the singular values of B in decreasing
   73: *          order.
   74: *
   75: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
   76: *          On entry, the N-1 offdiagonal elements of the bidiagonal
   77: *          matrix B. 
   78: *          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
   79: *          will contain the diagonal and superdiagonal elements of a
   80: *          bidiagonal matrix orthogonally equivalent to the one given
   81: *          as input.
   82: *
   83: *  VT      (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
   84: *          On entry, an N-by-NCVT matrix VT.
   85: *          On exit, VT is overwritten by P**T * VT.
   86: *          Not referenced if NCVT = 0.
   87: *
   88: *  LDVT    (input) INTEGER
   89: *          The leading dimension of the array VT.
   90: *          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
   91: *
   92: *  U       (input/output) DOUBLE PRECISION array, dimension (LDU, N)
   93: *          On entry, an NRU-by-N matrix U.
   94: *          On exit, U is overwritten by U * Q.
   95: *          Not referenced if NRU = 0.
   96: *
   97: *  LDU     (input) INTEGER
   98: *          The leading dimension of the array U.  LDU >= max(1,NRU).
   99: *
  100: *  C       (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
  101: *          On entry, an N-by-NCC matrix C.
  102: *          On exit, C is overwritten by Q**T * C.
  103: *          Not referenced if NCC = 0.
  104: *
  105: *  LDC     (input) INTEGER
  106: *          The leading dimension of the array C.
  107: *          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
  108: *
  109: *  WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)
  110: *
  111: *  INFO    (output) INTEGER
  112: *          = 0:  successful exit
  113: *          < 0:  If INFO = -i, the i-th argument had an illegal value
  114: *          > 0:
  115: *             if NCVT = NRU = NCC = 0,
  116: *                = 1, a split was marked by a positive value in E
  117: *                = 2, current block of Z not diagonalized after 30*N
  118: *                     iterations (in inner while loop)
  119: *                = 3, termination criterion of outer while loop not met 
  120: *                     (program created more than N unreduced blocks)
  121: *             else NCVT = NRU = NCC = 0,
  122: *                   the algorithm did not converge; D and E contain the
  123: *                   elements of a bidiagonal matrix which is orthogonally
  124: *                   similar to the input matrix B;  if INFO = i, i
  125: *                   elements of E have not converged to zero.
  126: *
  127: *  Internal Parameters
  128: *  ===================
  129: *
  130: *  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
  131: *          TOLMUL controls the convergence criterion of the QR loop.
  132: *          If it is positive, TOLMUL*EPS is the desired relative
  133: *             precision in the computed singular values.
  134: *          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
  135: *             desired absolute accuracy in the computed singular
  136: *             values (corresponds to relative accuracy
  137: *             abs(TOLMUL*EPS) in the largest singular value.
  138: *          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
  139: *             between 10 (for fast convergence) and .1/EPS
  140: *             (for there to be some accuracy in the results).
  141: *          Default is to lose at either one eighth or 2 of the
  142: *             available decimal digits in each computed singular value
  143: *             (whichever is smaller).
  144: *
  145: *  MAXITR  INTEGER, default = 6
  146: *          MAXITR controls the maximum number of passes of the
  147: *          algorithm through its inner loop. The algorithms stops
  148: *          (and so fails to converge) if the number of passes
  149: *          through the inner loop exceeds MAXITR*N**2.
  150: *
  151: *  =====================================================================
  152: *
  153: *     .. Parameters ..
  154:       DOUBLE PRECISION   ZERO
  155:       PARAMETER          ( ZERO = 0.0D0 )
  156:       DOUBLE PRECISION   ONE
  157:       PARAMETER          ( ONE = 1.0D0 )
  158:       DOUBLE PRECISION   NEGONE
  159:       PARAMETER          ( NEGONE = -1.0D0 )
  160:       DOUBLE PRECISION   HNDRTH
  161:       PARAMETER          ( HNDRTH = 0.01D0 )
  162:       DOUBLE PRECISION   TEN
  163:       PARAMETER          ( TEN = 10.0D0 )
  164:       DOUBLE PRECISION   HNDRD
  165:       PARAMETER          ( HNDRD = 100.0D0 )
  166:       DOUBLE PRECISION   MEIGTH
  167:       PARAMETER          ( MEIGTH = -0.125D0 )
  168:       INTEGER            MAXITR
  169:       PARAMETER          ( MAXITR = 6 )
  170: *     ..
  171: *     .. Local Scalars ..
  172:       LOGICAL            LOWER, ROTATE
  173:       INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
  174:      $                   NM12, NM13, OLDLL, OLDM
  175:       DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
  176:      $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
  177:      $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
  178:      $                   SN, THRESH, TOL, TOLMUL, UNFL
  179: *     ..
  180: *     .. External Functions ..
  181:       LOGICAL            LSAME
  182:       DOUBLE PRECISION   DLAMCH
  183:       EXTERNAL           LSAME, DLAMCH
  184: *     ..
  185: *     .. External Subroutines ..
  186:       EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASR, DLASV2, DROT,
  187:      $                   DSCAL, DSWAP, XERBLA
  188: *     ..
  189: *     .. Intrinsic Functions ..
  190:       INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
  191: *     ..
  192: *     .. Executable Statements ..
  193: *
  194: *     Test the input parameters.
  195: *
  196:       INFO = 0
  197:       LOWER = LSAME( UPLO, 'L' )
  198:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
  199:          INFO = -1
  200:       ELSE IF( N.LT.0 ) THEN
  201:          INFO = -2
  202:       ELSE IF( NCVT.LT.0 ) THEN
  203:          INFO = -3
  204:       ELSE IF( NRU.LT.0 ) THEN
  205:          INFO = -4
  206:       ELSE IF( NCC.LT.0 ) THEN
  207:          INFO = -5
  208:       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
  209:      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
  210:          INFO = -9
  211:       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
  212:          INFO = -11
  213:       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
  214:      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
  215:          INFO = -13
  216:       END IF
  217:       IF( INFO.NE.0 ) THEN
  218:          CALL XERBLA( 'DBDSQR', -INFO )
  219:          RETURN
  220:       END IF
  221:       IF( N.EQ.0 )
  222:      $   RETURN
  223:       IF( N.EQ.1 )
  224:      $   GO TO 160
  225: *
  226: *     ROTATE is true if any singular vectors desired, false otherwise
  227: *
  228:       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
  229: *
  230: *     If no singular vectors desired, use qd algorithm
  231: *
  232:       IF( .NOT.ROTATE ) THEN
  233:          CALL DLASQ1( N, D, E, WORK, INFO )
  234:          RETURN
  235:       END IF
  236: *
  237:       NM1 = N - 1
  238:       NM12 = NM1 + NM1
  239:       NM13 = NM12 + NM1
  240:       IDIR = 0
  241: *
  242: *     Get machine constants
  243: *
  244:       EPS = DLAMCH( 'Epsilon' )
  245:       UNFL = DLAMCH( 'Safe minimum' )
  246: *
  247: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
  248: *     by applying Givens rotations on the left
  249: *
  250:       IF( LOWER ) THEN
  251:          DO 10 I = 1, N - 1
  252:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  253:             D( I ) = R
  254:             E( I ) = SN*D( I+1 )
  255:             D( I+1 ) = CS*D( I+1 )
  256:             WORK( I ) = CS
  257:             WORK( NM1+I ) = SN
  258:    10    CONTINUE
  259: *
  260: *        Update singular vectors if desired
  261: *
  262:          IF( NRU.GT.0 )
  263:      $      CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ), WORK( N ), U,
  264:      $                  LDU )
  265:          IF( NCC.GT.0 )
  266:      $      CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ), WORK( N ), C,
  267:      $                  LDC )
  268:       END IF
  269: *
  270: *     Compute singular values to relative accuracy TOL
  271: *     (By setting TOL to be negative, algorithm will compute
  272: *     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
  273: *
  274:       TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
  275:       TOL = TOLMUL*EPS
  276: *
  277: *     Compute approximate maximum, minimum singular values
  278: *
  279:       SMAX = ZERO
  280:       DO 20 I = 1, N
  281:          SMAX = MAX( SMAX, ABS( D( I ) ) )
  282:    20 CONTINUE
  283:       DO 30 I = 1, N - 1
  284:          SMAX = MAX( SMAX, ABS( E( I ) ) )
  285:    30 CONTINUE
  286:       SMINL = ZERO
  287:       IF( TOL.GE.ZERO ) THEN
  288: *
  289: *        Relative accuracy desired
  290: *
  291:          SMINOA = ABS( D( 1 ) )
  292:          IF( SMINOA.EQ.ZERO )
  293:      $      GO TO 50
  294:          MU = SMINOA
  295:          DO 40 I = 2, N
  296:             MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
  297:             SMINOA = MIN( SMINOA, MU )
  298:             IF( SMINOA.EQ.ZERO )
  299:      $         GO TO 50
  300:    40    CONTINUE
  301:    50    CONTINUE
  302:          SMINOA = SMINOA / SQRT( DBLE( N ) )
  303:          THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
  304:       ELSE
  305: *
  306: *        Absolute accuracy desired
  307: *
  308:          THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
  309:       END IF
  310: *
  311: *     Prepare for main iteration loop for the singular values
  312: *     (MAXIT is the maximum number of passes through the inner
  313: *     loop permitted before nonconvergence signalled.)
  314: *
  315:       MAXIT = MAXITR*N*N
  316:       ITER = 0
  317:       OLDLL = -1
  318:       OLDM = -1
  319: *
  320: *     M points to last element of unconverged part of matrix
  321: *
  322:       M = N
  323: *
  324: *     Begin main iteration loop
  325: *
  326:    60 CONTINUE
  327: *
  328: *     Check for convergence or exceeding iteration count
  329: *
  330:       IF( M.LE.1 )
  331:      $   GO TO 160
  332:       IF( ITER.GT.MAXIT )
  333:      $   GO TO 200
  334: *
  335: *     Find diagonal block of matrix to work on
  336: *
  337:       IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
  338:      $   D( M ) = ZERO
  339:       SMAX = ABS( D( M ) )
  340:       SMIN = SMAX
  341:       DO 70 LLL = 1, M - 1
  342:          LL = M - LLL
  343:          ABSS = ABS( D( LL ) )
  344:          ABSE = ABS( E( LL ) )
  345:          IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
  346:      $      D( LL ) = ZERO
  347:          IF( ABSE.LE.THRESH )
  348:      $      GO TO 80
  349:          SMIN = MIN( SMIN, ABSS )
  350:          SMAX = MAX( SMAX, ABSS, ABSE )
  351:    70 CONTINUE
  352:       LL = 0
  353:       GO TO 90
  354:    80 CONTINUE
  355:       E( LL ) = ZERO
  356: *
  357: *     Matrix splits since E(LL) = 0
  358: *
  359:       IF( LL.EQ.M-1 ) THEN
  360: *
  361: *        Convergence of bottom singular value, return to top of loop
  362: *
  363:          M = M - 1
  364:          GO TO 60
  365:       END IF
  366:    90 CONTINUE
  367:       LL = LL + 1
  368: *
  369: *     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
  370: *
  371:       IF( LL.EQ.M-1 ) THEN
  372: *
  373: *        2 by 2 block, handle separately
  374: *
  375:          CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
  376:      $                COSR, SINL, COSL )
  377:          D( M-1 ) = SIGMX
  378:          E( M-1 ) = ZERO
  379:          D( M ) = SIGMN
  380: *
  381: *        Compute singular vectors, if desired
  382: *
  383:          IF( NCVT.GT.0 )
  384:      $      CALL DROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT, COSR,
  385:      $                 SINR )
  386:          IF( NRU.GT.0 )
  387:      $      CALL DROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
  388:          IF( NCC.GT.0 )
  389:      $      CALL DROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
  390:      $                 SINL )
  391:          M = M - 2
  392:          GO TO 60
  393:       END IF
  394: *
  395: *     If working on new submatrix, choose shift direction
  396: *     (from larger end diagonal element towards smaller)
  397: *
  398:       IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
  399:          IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
  400: *
  401: *           Chase bulge from top (big end) to bottom (small end)
  402: *
  403:             IDIR = 1
  404:          ELSE
  405: *
  406: *           Chase bulge from bottom (big end) to top (small end)
  407: *
  408:             IDIR = 2
  409:          END IF
  410:       END IF
  411: *
  412: *     Apply convergence tests
  413: *
  414:       IF( IDIR.EQ.1 ) THEN
  415: *
  416: *        Run convergence test in forward direction
  417: *        First apply standard test to bottom of matrix
  418: *
  419:          IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
  420:      $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
  421:             E( M-1 ) = ZERO
  422:             GO TO 60
  423:          END IF
  424: *
  425:          IF( TOL.GE.ZERO ) THEN
  426: *
  427: *           If relative accuracy desired,
  428: *           apply convergence criterion forward
  429: *
  430:             MU = ABS( D( LL ) )
  431:             SMINL = MU
  432:             DO 100 LLL = LL, M - 1
  433:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  434:                   E( LLL ) = ZERO
  435:                   GO TO 60
  436:                END IF
  437:                MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  438:                SMINL = MIN( SMINL, MU )
  439:   100       CONTINUE
  440:          END IF
  441: *
  442:       ELSE
  443: *
  444: *        Run convergence test in backward direction
  445: *        First apply standard test to top of matrix
  446: *
  447:          IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
  448:      $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
  449:             E( LL ) = ZERO
  450:             GO TO 60
  451:          END IF
  452: *
  453:          IF( TOL.GE.ZERO ) THEN
  454: *
  455: *           If relative accuracy desired,
  456: *           apply convergence criterion backward
  457: *
  458:             MU = ABS( D( M ) )
  459:             SMINL = MU
  460:             DO 110 LLL = M - 1, LL, -1
  461:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  462:                   E( LLL ) = ZERO
  463:                   GO TO 60
  464:                END IF
  465:                MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  466:                SMINL = MIN( SMINL, MU )
  467:   110       CONTINUE
  468:          END IF
  469:       END IF
  470:       OLDLL = LL
  471:       OLDM = M
  472: *
  473: *     Compute shift.  First, test if shifting would ruin relative
  474: *     accuracy, and if so set the shift to zero.
  475: *
  476:       IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
  477:      $    MAX( EPS, HNDRTH*TOL ) ) THEN
  478: *
  479: *        Use a zero shift to avoid loss of relative accuracy
  480: *
  481:          SHIFT = ZERO
  482:       ELSE
  483: *
  484: *        Compute the shift from 2-by-2 block at end of matrix
  485: *
  486:          IF( IDIR.EQ.1 ) THEN
  487:             SLL = ABS( D( LL ) )
  488:             CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
  489:          ELSE
  490:             SLL = ABS( D( M ) )
  491:             CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
  492:          END IF
  493: *
  494: *        Test if shift negligible, and if so set to zero
  495: *
  496:          IF( SLL.GT.ZERO ) THEN
  497:             IF( ( SHIFT / SLL )**2.LT.EPS )
  498:      $         SHIFT = ZERO
  499:          END IF
  500:       END IF
  501: *
  502: *     Increment iteration count
  503: *
  504:       ITER = ITER + M - LL
  505: *
  506: *     If SHIFT = 0, do simplified QR iteration
  507: *
  508:       IF( SHIFT.EQ.ZERO ) THEN
  509:          IF( IDIR.EQ.1 ) THEN
  510: *
  511: *           Chase bulge from top to bottom
  512: *           Save cosines and sines for later singular vector updates
  513: *
  514:             CS = ONE
  515:             OLDCS = ONE
  516:             DO 120 I = LL, M - 1
  517:                CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
  518:                IF( I.GT.LL )
  519:      $            E( I-1 ) = OLDSN*R
  520:                CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
  521:                WORK( I-LL+1 ) = CS
  522:                WORK( I-LL+1+NM1 ) = SN
  523:                WORK( I-LL+1+NM12 ) = OLDCS
  524:                WORK( I-LL+1+NM13 ) = OLDSN
  525:   120       CONTINUE
  526:             H = D( M )*CS
  527:             D( M ) = H*OLDCS
  528:             E( M-1 ) = H*OLDSN
  529: *
  530: *           Update singular vectors
  531: *
  532:             IF( NCVT.GT.0 )
  533:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ),
  534:      $                     WORK( N ), VT( LL, 1 ), LDVT )
  535:             IF( NRU.GT.0 )
  536:      $         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ),
  537:      $                     WORK( NM13+1 ), U( 1, LL ), LDU )
  538:             IF( NCC.GT.0 )
  539:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ),
  540:      $                     WORK( NM13+1 ), C( LL, 1 ), LDC )
  541: *
  542: *           Test convergence
  543: *
  544:             IF( ABS( E( M-1 ) ).LE.THRESH )
  545:      $         E( M-1 ) = ZERO
  546: *
  547:          ELSE
  548: *
  549: *           Chase bulge from bottom to top
  550: *           Save cosines and sines for later singular vector updates
  551: *
  552:             CS = ONE
  553:             OLDCS = ONE
  554:             DO 130 I = M, LL + 1, -1
  555:                CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
  556:                IF( I.LT.M )
  557:      $            E( I ) = OLDSN*R
  558:                CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
  559:                WORK( I-LL ) = CS
  560:                WORK( I-LL+NM1 ) = -SN
  561:                WORK( I-LL+NM12 ) = OLDCS
  562:                WORK( I-LL+NM13 ) = -OLDSN
  563:   130       CONTINUE
  564:             H = D( LL )*CS
  565:             D( LL ) = H*OLDCS
  566:             E( LL ) = H*OLDSN
  567: *
  568: *           Update singular vectors
  569: *
  570:             IF( NCVT.GT.0 )
  571:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ),
  572:      $                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
  573:             IF( NRU.GT.0 )
  574:      $         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ),
  575:      $                     WORK( N ), U( 1, LL ), LDU )
  576:             IF( NCC.GT.0 )
  577:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ),
  578:      $                     WORK( N ), C( LL, 1 ), LDC )
  579: *
  580: *           Test convergence
  581: *
  582:             IF( ABS( E( LL ) ).LE.THRESH )
  583:      $         E( LL ) = ZERO
  584:          END IF
  585:       ELSE
  586: *
  587: *        Use nonzero shift
  588: *
  589:          IF( IDIR.EQ.1 ) THEN
  590: *
  591: *           Chase bulge from top to bottom
  592: *           Save cosines and sines for later singular vector updates
  593: *
  594:             F = ( ABS( D( LL ) )-SHIFT )*
  595:      $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
  596:             G = E( LL )
  597:             DO 140 I = LL, M - 1
  598:                CALL DLARTG( F, G, COSR, SINR, R )
  599:                IF( I.GT.LL )
  600:      $            E( I-1 ) = R
  601:                F = COSR*D( I ) + SINR*E( I )
  602:                E( I ) = COSR*E( I ) - SINR*D( I )
  603:                G = SINR*D( I+1 )
  604:                D( I+1 ) = COSR*D( I+1 )
  605:                CALL DLARTG( F, G, COSL, SINL, R )
  606:                D( I ) = R
  607:                F = COSL*E( I ) + SINL*D( I+1 )
  608:                D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
  609:                IF( I.LT.M-1 ) THEN
  610:                   G = SINL*E( I+1 )
  611:                   E( I+1 ) = COSL*E( I+1 )
  612:                END IF
  613:                WORK( I-LL+1 ) = COSR
  614:                WORK( I-LL+1+NM1 ) = SINR
  615:                WORK( I-LL+1+NM12 ) = COSL
  616:                WORK( I-LL+1+NM13 ) = SINL
  617:   140       CONTINUE
  618:             E( M-1 ) = F
  619: *
  620: *           Update singular vectors
  621: *
  622:             IF( NCVT.GT.0 )
  623:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ),
  624:      $                     WORK( N ), VT( LL, 1 ), LDVT )
  625:             IF( NRU.GT.0 )
  626:      $         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ),
  627:      $                     WORK( NM13+1 ), U( 1, LL ), LDU )
  628:             IF( NCC.GT.0 )
  629:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ),
  630:      $                     WORK( NM13+1 ), C( LL, 1 ), LDC )
  631: *
  632: *           Test convergence
  633: *
  634:             IF( ABS( E( M-1 ) ).LE.THRESH )
  635:      $         E( M-1 ) = ZERO
  636: *
  637:          ELSE
  638: *
  639: *           Chase bulge from bottom to top
  640: *           Save cosines and sines for later singular vector updates
  641: *
  642:             F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
  643:      $          D( M ) )
  644:             G = E( M-1 )
  645:             DO 150 I = M, LL + 1, -1
  646:                CALL DLARTG( F, G, COSR, SINR, R )
  647:                IF( I.LT.M )
  648:      $            E( I ) = R
  649:                F = COSR*D( I ) + SINR*E( I-1 )
  650:                E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
  651:                G = SINR*D( I-1 )
  652:                D( I-1 ) = COSR*D( I-1 )
  653:                CALL DLARTG( F, G, COSL, SINL, R )
  654:                D( I ) = R
  655:                F = COSL*E( I-1 ) + SINL*D( I-1 )
  656:                D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
  657:                IF( I.GT.LL+1 ) THEN
  658:                   G = SINL*E( I-2 )
  659:                   E( I-2 ) = COSL*E( I-2 )
  660:                END IF
  661:                WORK( I-LL ) = COSR
  662:                WORK( I-LL+NM1 ) = -SINR
  663:                WORK( I-LL+NM12 ) = COSL
  664:                WORK( I-LL+NM13 ) = -SINL
  665:   150       CONTINUE
  666:             E( LL ) = F
  667: *
  668: *           Test convergence
  669: *
  670:             IF( ABS( E( LL ) ).LE.THRESH )
  671:      $         E( LL ) = ZERO
  672: *
  673: *           Update singular vectors if desired
  674: *
  675:             IF( NCVT.GT.0 )
  676:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ),
  677:      $                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
  678:             IF( NRU.GT.0 )
  679:      $         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ),
  680:      $                     WORK( N ), U( 1, LL ), LDU )
  681:             IF( NCC.GT.0 )
  682:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ),
  683:      $                     WORK( N ), C( LL, 1 ), LDC )
  684:          END IF
  685:       END IF
  686: *
  687: *     QR iteration finished, go back and check convergence
  688: *
  689:       GO TO 60
  690: *
  691: *     All singular values converged, so make them positive
  692: *
  693:   160 CONTINUE
  694:       DO 170 I = 1, N
  695:          IF( D( I ).LT.ZERO ) THEN
  696:             D( I ) = -D( I )
  697: *
  698: *           Change sign of singular vectors, if desired
  699: *
  700:             IF( NCVT.GT.0 )
  701:      $         CALL DSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
  702:          END IF
  703:   170 CONTINUE
  704: *
  705: *     Sort the singular values into decreasing order (insertion sort on
  706: *     singular values, but only one transposition per singular vector)
  707: *
  708:       DO 190 I = 1, N - 1
  709: *
  710: *        Scan for smallest D(I)
  711: *
  712:          ISUB = 1
  713:          SMIN = D( 1 )
  714:          DO 180 J = 2, N + 1 - I
  715:             IF( D( J ).LE.SMIN ) THEN
  716:                ISUB = J
  717:                SMIN = D( J )
  718:             END IF
  719:   180    CONTINUE
  720:          IF( ISUB.NE.N+1-I ) THEN
  721: *
  722: *           Swap singular values and vectors
  723: *
  724:             D( ISUB ) = D( N+1-I )
  725:             D( N+1-I ) = SMIN
  726:             IF( NCVT.GT.0 )
  727:      $         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
  728:      $                     LDVT )
  729:             IF( NRU.GT.0 )
  730:      $         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
  731:             IF( NCC.GT.0 )
  732:      $         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
  733:          END IF
  734:   190 CONTINUE
  735:       GO TO 220
  736: *
  737: *     Maximum number of iterations exceeded, failure to converge
  738: *
  739:   200 CONTINUE
  740:       INFO = 0
  741:       DO 210 I = 1, N - 1
  742:          IF( E( I ).NE.ZERO )
  743:      $      INFO = INFO + 1
  744:   210 CONTINUE
  745:   220 CONTINUE
  746:       RETURN
  747: *
  748: *     End of DBDSQR
  749: *
  750:       END

CVSweb interface <joel.bertrand@systella.fr>