File:  [local] / rpl / lapack / lapack / dbdsqr.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Tue May 29 06:55:16 2018 UTC (6 years ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DBDSQR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DBDSQR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsqr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsqr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsqr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
   22: *                          LDU, C, LDC, WORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
   30: *      $                   VT( LDVT, * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DBDSQR computes the singular values and, optionally, the right and/or
   40: *> left singular vectors from the singular value decomposition (SVD) of
   41: *> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
   42: *> zero-shift QR algorithm.  The SVD of B has the form
   43: *>
   44: *>    B = Q * S * P**T
   45: *>
   46: *> where S is the diagonal matrix of singular values, Q is an orthogonal
   47: *> matrix of left singular vectors, and P is an orthogonal matrix of
   48: *> right singular vectors.  If left singular vectors are requested, this
   49: *> subroutine actually returns U*Q instead of Q, and, if right singular
   50: *> vectors are requested, this subroutine returns P**T*VT instead of
   51: *> P**T, for given real input matrices U and VT.  When U and VT are the
   52: *> orthogonal matrices that reduce a general matrix A to bidiagonal
   53: *> form:  A = U*B*VT, as computed by DGEBRD, then
   54: *>
   55: *>    A = (U*Q) * S * (P**T*VT)
   56: *>
   57: *> is the SVD of A.  Optionally, the subroutine may also compute Q**T*C
   58: *> for a given real input matrix C.
   59: *>
   60: *> See "Computing  Small Singular Values of Bidiagonal Matrices With
   61: *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
   62: *> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
   63: *> no. 5, pp. 873-912, Sept 1990) and
   64: *> "Accurate singular values and differential qd algorithms," by
   65: *> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
   66: *> Department, University of California at Berkeley, July 1992
   67: *> for a detailed description of the algorithm.
   68: *> \endverbatim
   69: *
   70: *  Arguments:
   71: *  ==========
   72: *
   73: *> \param[in] UPLO
   74: *> \verbatim
   75: *>          UPLO is CHARACTER*1
   76: *>          = 'U':  B is upper bidiagonal;
   77: *>          = 'L':  B is lower bidiagonal.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The order of the matrix B.  N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NCVT
   87: *> \verbatim
   88: *>          NCVT is INTEGER
   89: *>          The number of columns of the matrix VT. NCVT >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] NRU
   93: *> \verbatim
   94: *>          NRU is INTEGER
   95: *>          The number of rows of the matrix U. NRU >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] NCC
   99: *> \verbatim
  100: *>          NCC is INTEGER
  101: *>          The number of columns of the matrix C. NCC >= 0.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] D
  105: *> \verbatim
  106: *>          D is DOUBLE PRECISION array, dimension (N)
  107: *>          On entry, the n diagonal elements of the bidiagonal matrix B.
  108: *>          On exit, if INFO=0, the singular values of B in decreasing
  109: *>          order.
  110: *> \endverbatim
  111: *>
  112: *> \param[in,out] E
  113: *> \verbatim
  114: *>          E is DOUBLE PRECISION array, dimension (N-1)
  115: *>          On entry, the N-1 offdiagonal elements of the bidiagonal
  116: *>          matrix B.
  117: *>          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
  118: *>          will contain the diagonal and superdiagonal elements of a
  119: *>          bidiagonal matrix orthogonally equivalent to the one given
  120: *>          as input.
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] VT
  124: *> \verbatim
  125: *>          VT is DOUBLE PRECISION array, dimension (LDVT, NCVT)
  126: *>          On entry, an N-by-NCVT matrix VT.
  127: *>          On exit, VT is overwritten by P**T * VT.
  128: *>          Not referenced if NCVT = 0.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDVT
  132: *> \verbatim
  133: *>          LDVT is INTEGER
  134: *>          The leading dimension of the array VT.
  135: *>          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] U
  139: *> \verbatim
  140: *>          U is DOUBLE PRECISION array, dimension (LDU, N)
  141: *>          On entry, an NRU-by-N matrix U.
  142: *>          On exit, U is overwritten by U * Q.
  143: *>          Not referenced if NRU = 0.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDU
  147: *> \verbatim
  148: *>          LDU is INTEGER
  149: *>          The leading dimension of the array U.  LDU >= max(1,NRU).
  150: *> \endverbatim
  151: *>
  152: *> \param[in,out] C
  153: *> \verbatim
  154: *>          C is DOUBLE PRECISION array, dimension (LDC, NCC)
  155: *>          On entry, an N-by-NCC matrix C.
  156: *>          On exit, C is overwritten by Q**T * C.
  157: *>          Not referenced if NCC = 0.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] LDC
  161: *> \verbatim
  162: *>          LDC is INTEGER
  163: *>          The leading dimension of the array C.
  164: *>          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] WORK
  168: *> \verbatim
  169: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
  170: *> \endverbatim
  171: *>
  172: *> \param[out] INFO
  173: *> \verbatim
  174: *>          INFO is INTEGER
  175: *>          = 0:  successful exit
  176: *>          < 0:  If INFO = -i, the i-th argument had an illegal value
  177: *>          > 0:
  178: *>             if NCVT = NRU = NCC = 0,
  179: *>                = 1, a split was marked by a positive value in E
  180: *>                = 2, current block of Z not diagonalized after 30*N
  181: *>                     iterations (in inner while loop)
  182: *>                = 3, termination criterion of outer while loop not met
  183: *>                     (program created more than N unreduced blocks)
  184: *>             else NCVT = NRU = NCC = 0,
  185: *>                   the algorithm did not converge; D and E contain the
  186: *>                   elements of a bidiagonal matrix which is orthogonally
  187: *>                   similar to the input matrix B;  if INFO = i, i
  188: *>                   elements of E have not converged to zero.
  189: *> \endverbatim
  190: *
  191: *> \par Internal Parameters:
  192: *  =========================
  193: *>
  194: *> \verbatim
  195: *>  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
  196: *>          TOLMUL controls the convergence criterion of the QR loop.
  197: *>          If it is positive, TOLMUL*EPS is the desired relative
  198: *>             precision in the computed singular values.
  199: *>          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
  200: *>             desired absolute accuracy in the computed singular
  201: *>             values (corresponds to relative accuracy
  202: *>             abs(TOLMUL*EPS) in the largest singular value.
  203: *>          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
  204: *>             between 10 (for fast convergence) and .1/EPS
  205: *>             (for there to be some accuracy in the results).
  206: *>          Default is to lose at either one eighth or 2 of the
  207: *>             available decimal digits in each computed singular value
  208: *>             (whichever is smaller).
  209: *>
  210: *>  MAXITR  INTEGER, default = 6
  211: *>          MAXITR controls the maximum number of passes of the
  212: *>          algorithm through its inner loop. The algorithms stops
  213: *>          (and so fails to converge) if the number of passes
  214: *>          through the inner loop exceeds MAXITR*N**2.
  215: *>
  216: *> \endverbatim
  217: *
  218: *> \par Note:
  219: *  ===========
  220: *>
  221: *> \verbatim
  222: *>  Bug report from Cezary Dendek.
  223: *>  On March 23rd 2017, the INTEGER variable MAXIT = MAXITR*N**2 is
  224: *>  removed since it can overflow pretty easily (for N larger or equal
  225: *>  than 18,919). We instead use MAXITDIVN = MAXITR*N.
  226: *> \endverbatim
  227: *
  228: *  Authors:
  229: *  ========
  230: *
  231: *> \author Univ. of Tennessee
  232: *> \author Univ. of California Berkeley
  233: *> \author Univ. of Colorado Denver
  234: *> \author NAG Ltd.
  235: *
  236: *> \date June 2017
  237: *
  238: *> \ingroup auxOTHERcomputational
  239: *
  240: *  =====================================================================
  241:       SUBROUTINE DBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
  242:      $                   LDU, C, LDC, WORK, INFO )
  243: *
  244: *  -- LAPACK computational routine (version 3.7.1) --
  245: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  246: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  247: *     June 2017
  248: *
  249: *     .. Scalar Arguments ..
  250:       CHARACTER          UPLO
  251:       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
  252: *     ..
  253: *     .. Array Arguments ..
  254:       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
  255:      $                   VT( LDVT, * ), WORK( * )
  256: *     ..
  257: *
  258: *  =====================================================================
  259: *
  260: *     .. Parameters ..
  261:       DOUBLE PRECISION   ZERO
  262:       PARAMETER          ( ZERO = 0.0D0 )
  263:       DOUBLE PRECISION   ONE
  264:       PARAMETER          ( ONE = 1.0D0 )
  265:       DOUBLE PRECISION   NEGONE
  266:       PARAMETER          ( NEGONE = -1.0D0 )
  267:       DOUBLE PRECISION   HNDRTH
  268:       PARAMETER          ( HNDRTH = 0.01D0 )
  269:       DOUBLE PRECISION   TEN
  270:       PARAMETER          ( TEN = 10.0D0 )
  271:       DOUBLE PRECISION   HNDRD
  272:       PARAMETER          ( HNDRD = 100.0D0 )
  273:       DOUBLE PRECISION   MEIGTH
  274:       PARAMETER          ( MEIGTH = -0.125D0 )
  275:       INTEGER            MAXITR
  276:       PARAMETER          ( MAXITR = 6 )
  277: *     ..
  278: *     .. Local Scalars ..
  279:       LOGICAL            LOWER, ROTATE
  280:       INTEGER            I, IDIR, ISUB, ITER, ITERDIVN, J, LL, LLL, M,
  281:      $                   MAXITDIVN, NM1, NM12, NM13, OLDLL, OLDM
  282:       DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
  283:      $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
  284:      $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
  285:      $                   SN, THRESH, TOL, TOLMUL, UNFL
  286: *     ..
  287: *     .. External Functions ..
  288:       LOGICAL            LSAME
  289:       DOUBLE PRECISION   DLAMCH
  290:       EXTERNAL           LSAME, DLAMCH
  291: *     ..
  292: *     .. External Subroutines ..
  293:       EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASR, DLASV2, DROT,
  294:      $                   DSCAL, DSWAP, XERBLA
  295: *     ..
  296: *     .. Intrinsic Functions ..
  297:       INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
  298: *     ..
  299: *     .. Executable Statements ..
  300: *
  301: *     Test the input parameters.
  302: *
  303:       INFO = 0
  304:       LOWER = LSAME( UPLO, 'L' )
  305:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
  306:          INFO = -1
  307:       ELSE IF( N.LT.0 ) THEN
  308:          INFO = -2
  309:       ELSE IF( NCVT.LT.0 ) THEN
  310:          INFO = -3
  311:       ELSE IF( NRU.LT.0 ) THEN
  312:          INFO = -4
  313:       ELSE IF( NCC.LT.0 ) THEN
  314:          INFO = -5
  315:       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
  316:      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
  317:          INFO = -9
  318:       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
  319:          INFO = -11
  320:       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
  321:      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
  322:          INFO = -13
  323:       END IF
  324:       IF( INFO.NE.0 ) THEN
  325:          CALL XERBLA( 'DBDSQR', -INFO )
  326:          RETURN
  327:       END IF
  328:       IF( N.EQ.0 )
  329:      $   RETURN
  330:       IF( N.EQ.1 )
  331:      $   GO TO 160
  332: *
  333: *     ROTATE is true if any singular vectors desired, false otherwise
  334: *
  335:       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
  336: *
  337: *     If no singular vectors desired, use qd algorithm
  338: *
  339:       IF( .NOT.ROTATE ) THEN
  340:          CALL DLASQ1( N, D, E, WORK, INFO )
  341: *
  342: *     If INFO equals 2, dqds didn't finish, try to finish
  343: *
  344:          IF( INFO .NE. 2 ) RETURN
  345:          INFO = 0
  346:       END IF
  347: *
  348:       NM1 = N - 1
  349:       NM12 = NM1 + NM1
  350:       NM13 = NM12 + NM1
  351:       IDIR = 0
  352: *
  353: *     Get machine constants
  354: *
  355:       EPS = DLAMCH( 'Epsilon' )
  356:       UNFL = DLAMCH( 'Safe minimum' )
  357: *
  358: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
  359: *     by applying Givens rotations on the left
  360: *
  361:       IF( LOWER ) THEN
  362:          DO 10 I = 1, N - 1
  363:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  364:             D( I ) = R
  365:             E( I ) = SN*D( I+1 )
  366:             D( I+1 ) = CS*D( I+1 )
  367:             WORK( I ) = CS
  368:             WORK( NM1+I ) = SN
  369:    10    CONTINUE
  370: *
  371: *        Update singular vectors if desired
  372: *
  373:          IF( NRU.GT.0 )
  374:      $      CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ), WORK( N ), U,
  375:      $                  LDU )
  376:          IF( NCC.GT.0 )
  377:      $      CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ), WORK( N ), C,
  378:      $                  LDC )
  379:       END IF
  380: *
  381: *     Compute singular values to relative accuracy TOL
  382: *     (By setting TOL to be negative, algorithm will compute
  383: *     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
  384: *
  385:       TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
  386:       TOL = TOLMUL*EPS
  387: *
  388: *     Compute approximate maximum, minimum singular values
  389: *
  390:       SMAX = ZERO
  391:       DO 20 I = 1, N
  392:          SMAX = MAX( SMAX, ABS( D( I ) ) )
  393:    20 CONTINUE
  394:       DO 30 I = 1, N - 1
  395:          SMAX = MAX( SMAX, ABS( E( I ) ) )
  396:    30 CONTINUE
  397:       SMINL = ZERO
  398:       IF( TOL.GE.ZERO ) THEN
  399: *
  400: *        Relative accuracy desired
  401: *
  402:          SMINOA = ABS( D( 1 ) )
  403:          IF( SMINOA.EQ.ZERO )
  404:      $      GO TO 50
  405:          MU = SMINOA
  406:          DO 40 I = 2, N
  407:             MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
  408:             SMINOA = MIN( SMINOA, MU )
  409:             IF( SMINOA.EQ.ZERO )
  410:      $         GO TO 50
  411:    40    CONTINUE
  412:    50    CONTINUE
  413:          SMINOA = SMINOA / SQRT( DBLE( N ) )
  414:          THRESH = MAX( TOL*SMINOA, MAXITR*(N*(N*UNFL)) )
  415:       ELSE
  416: *
  417: *        Absolute accuracy desired
  418: *
  419:          THRESH = MAX( ABS( TOL )*SMAX, MAXITR*(N*(N*UNFL)) )
  420:       END IF
  421: *
  422: *     Prepare for main iteration loop for the singular values
  423: *     (MAXIT is the maximum number of passes through the inner
  424: *     loop permitted before nonconvergence signalled.)
  425: *
  426:       MAXITDIVN = MAXITR*N
  427:       ITERDIVN = 0
  428:       ITER = -1
  429:       OLDLL = -1
  430:       OLDM = -1
  431: *
  432: *     M points to last element of unconverged part of matrix
  433: *
  434:       M = N
  435: *
  436: *     Begin main iteration loop
  437: *
  438:    60 CONTINUE
  439: *
  440: *     Check for convergence or exceeding iteration count
  441: *
  442:       IF( M.LE.1 )
  443:      $   GO TO 160
  444: *
  445:       IF( ITER.GE.N ) THEN
  446:          ITER = ITER - N
  447:          ITERDIVN = ITERDIVN + 1
  448:          IF( ITERDIVN.GE.MAXITDIVN )
  449:      $      GO TO 200
  450:       END IF
  451: *
  452: *     Find diagonal block of matrix to work on
  453: *
  454:       IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
  455:      $   D( M ) = ZERO
  456:       SMAX = ABS( D( M ) )
  457:       SMIN = SMAX
  458:       DO 70 LLL = 1, M - 1
  459:          LL = M - LLL
  460:          ABSS = ABS( D( LL ) )
  461:          ABSE = ABS( E( LL ) )
  462:          IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
  463:      $      D( LL ) = ZERO
  464:          IF( ABSE.LE.THRESH )
  465:      $      GO TO 80
  466:          SMIN = MIN( SMIN, ABSS )
  467:          SMAX = MAX( SMAX, ABSS, ABSE )
  468:    70 CONTINUE
  469:       LL = 0
  470:       GO TO 90
  471:    80 CONTINUE
  472:       E( LL ) = ZERO
  473: *
  474: *     Matrix splits since E(LL) = 0
  475: *
  476:       IF( LL.EQ.M-1 ) THEN
  477: *
  478: *        Convergence of bottom singular value, return to top of loop
  479: *
  480:          M = M - 1
  481:          GO TO 60
  482:       END IF
  483:    90 CONTINUE
  484:       LL = LL + 1
  485: *
  486: *     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
  487: *
  488:       IF( LL.EQ.M-1 ) THEN
  489: *
  490: *        2 by 2 block, handle separately
  491: *
  492:          CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
  493:      $                COSR, SINL, COSL )
  494:          D( M-1 ) = SIGMX
  495:          E( M-1 ) = ZERO
  496:          D( M ) = SIGMN
  497: *
  498: *        Compute singular vectors, if desired
  499: *
  500:          IF( NCVT.GT.0 )
  501:      $      CALL DROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT, COSR,
  502:      $                 SINR )
  503:          IF( NRU.GT.0 )
  504:      $      CALL DROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
  505:          IF( NCC.GT.0 )
  506:      $      CALL DROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
  507:      $                 SINL )
  508:          M = M - 2
  509:          GO TO 60
  510:       END IF
  511: *
  512: *     If working on new submatrix, choose shift direction
  513: *     (from larger end diagonal element towards smaller)
  514: *
  515:       IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
  516:          IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
  517: *
  518: *           Chase bulge from top (big end) to bottom (small end)
  519: *
  520:             IDIR = 1
  521:          ELSE
  522: *
  523: *           Chase bulge from bottom (big end) to top (small end)
  524: *
  525:             IDIR = 2
  526:          END IF
  527:       END IF
  528: *
  529: *     Apply convergence tests
  530: *
  531:       IF( IDIR.EQ.1 ) THEN
  532: *
  533: *        Run convergence test in forward direction
  534: *        First apply standard test to bottom of matrix
  535: *
  536:          IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
  537:      $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
  538:             E( M-1 ) = ZERO
  539:             GO TO 60
  540:          END IF
  541: *
  542:          IF( TOL.GE.ZERO ) THEN
  543: *
  544: *           If relative accuracy desired,
  545: *           apply convergence criterion forward
  546: *
  547:             MU = ABS( D( LL ) )
  548:             SMINL = MU
  549:             DO 100 LLL = LL, M - 1
  550:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  551:                   E( LLL ) = ZERO
  552:                   GO TO 60
  553:                END IF
  554:                MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  555:                SMINL = MIN( SMINL, MU )
  556:   100       CONTINUE
  557:          END IF
  558: *
  559:       ELSE
  560: *
  561: *        Run convergence test in backward direction
  562: *        First apply standard test to top of matrix
  563: *
  564:          IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
  565:      $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
  566:             E( LL ) = ZERO
  567:             GO TO 60
  568:          END IF
  569: *
  570:          IF( TOL.GE.ZERO ) THEN
  571: *
  572: *           If relative accuracy desired,
  573: *           apply convergence criterion backward
  574: *
  575:             MU = ABS( D( M ) )
  576:             SMINL = MU
  577:             DO 110 LLL = M - 1, LL, -1
  578:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  579:                   E( LLL ) = ZERO
  580:                   GO TO 60
  581:                END IF
  582:                MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  583:                SMINL = MIN( SMINL, MU )
  584:   110       CONTINUE
  585:          END IF
  586:       END IF
  587:       OLDLL = LL
  588:       OLDM = M
  589: *
  590: *     Compute shift.  First, test if shifting would ruin relative
  591: *     accuracy, and if so set the shift to zero.
  592: *
  593:       IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
  594:      $    MAX( EPS, HNDRTH*TOL ) ) THEN
  595: *
  596: *        Use a zero shift to avoid loss of relative accuracy
  597: *
  598:          SHIFT = ZERO
  599:       ELSE
  600: *
  601: *        Compute the shift from 2-by-2 block at end of matrix
  602: *
  603:          IF( IDIR.EQ.1 ) THEN
  604:             SLL = ABS( D( LL ) )
  605:             CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
  606:          ELSE
  607:             SLL = ABS( D( M ) )
  608:             CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
  609:          END IF
  610: *
  611: *        Test if shift negligible, and if so set to zero
  612: *
  613:          IF( SLL.GT.ZERO ) THEN
  614:             IF( ( SHIFT / SLL )**2.LT.EPS )
  615:      $         SHIFT = ZERO
  616:          END IF
  617:       END IF
  618: *
  619: *     Increment iteration count
  620: *
  621:       ITER = ITER + M - LL
  622: *
  623: *     If SHIFT = 0, do simplified QR iteration
  624: *
  625:       IF( SHIFT.EQ.ZERO ) THEN
  626:          IF( IDIR.EQ.1 ) THEN
  627: *
  628: *           Chase bulge from top to bottom
  629: *           Save cosines and sines for later singular vector updates
  630: *
  631:             CS = ONE
  632:             OLDCS = ONE
  633:             DO 120 I = LL, M - 1
  634:                CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
  635:                IF( I.GT.LL )
  636:      $            E( I-1 ) = OLDSN*R
  637:                CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
  638:                WORK( I-LL+1 ) = CS
  639:                WORK( I-LL+1+NM1 ) = SN
  640:                WORK( I-LL+1+NM12 ) = OLDCS
  641:                WORK( I-LL+1+NM13 ) = OLDSN
  642:   120       CONTINUE
  643:             H = D( M )*CS
  644:             D( M ) = H*OLDCS
  645:             E( M-1 ) = H*OLDSN
  646: *
  647: *           Update singular vectors
  648: *
  649:             IF( NCVT.GT.0 )
  650:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ),
  651:      $                     WORK( N ), VT( LL, 1 ), LDVT )
  652:             IF( NRU.GT.0 )
  653:      $         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ),
  654:      $                     WORK( NM13+1 ), U( 1, LL ), LDU )
  655:             IF( NCC.GT.0 )
  656:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ),
  657:      $                     WORK( NM13+1 ), C( LL, 1 ), LDC )
  658: *
  659: *           Test convergence
  660: *
  661:             IF( ABS( E( M-1 ) ).LE.THRESH )
  662:      $         E( M-1 ) = ZERO
  663: *
  664:          ELSE
  665: *
  666: *           Chase bulge from bottom to top
  667: *           Save cosines and sines for later singular vector updates
  668: *
  669:             CS = ONE
  670:             OLDCS = ONE
  671:             DO 130 I = M, LL + 1, -1
  672:                CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
  673:                IF( I.LT.M )
  674:      $            E( I ) = OLDSN*R
  675:                CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
  676:                WORK( I-LL ) = CS
  677:                WORK( I-LL+NM1 ) = -SN
  678:                WORK( I-LL+NM12 ) = OLDCS
  679:                WORK( I-LL+NM13 ) = -OLDSN
  680:   130       CONTINUE
  681:             H = D( LL )*CS
  682:             D( LL ) = H*OLDCS
  683:             E( LL ) = H*OLDSN
  684: *
  685: *           Update singular vectors
  686: *
  687:             IF( NCVT.GT.0 )
  688:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ),
  689:      $                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
  690:             IF( NRU.GT.0 )
  691:      $         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ),
  692:      $                     WORK( N ), U( 1, LL ), LDU )
  693:             IF( NCC.GT.0 )
  694:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ),
  695:      $                     WORK( N ), C( LL, 1 ), LDC )
  696: *
  697: *           Test convergence
  698: *
  699:             IF( ABS( E( LL ) ).LE.THRESH )
  700:      $         E( LL ) = ZERO
  701:          END IF
  702:       ELSE
  703: *
  704: *        Use nonzero shift
  705: *
  706:          IF( IDIR.EQ.1 ) THEN
  707: *
  708: *           Chase bulge from top to bottom
  709: *           Save cosines and sines for later singular vector updates
  710: *
  711:             F = ( ABS( D( LL ) )-SHIFT )*
  712:      $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
  713:             G = E( LL )
  714:             DO 140 I = LL, M - 1
  715:                CALL DLARTG( F, G, COSR, SINR, R )
  716:                IF( I.GT.LL )
  717:      $            E( I-1 ) = R
  718:                F = COSR*D( I ) + SINR*E( I )
  719:                E( I ) = COSR*E( I ) - SINR*D( I )
  720:                G = SINR*D( I+1 )
  721:                D( I+1 ) = COSR*D( I+1 )
  722:                CALL DLARTG( F, G, COSL, SINL, R )
  723:                D( I ) = R
  724:                F = COSL*E( I ) + SINL*D( I+1 )
  725:                D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
  726:                IF( I.LT.M-1 ) THEN
  727:                   G = SINL*E( I+1 )
  728:                   E( I+1 ) = COSL*E( I+1 )
  729:                END IF
  730:                WORK( I-LL+1 ) = COSR
  731:                WORK( I-LL+1+NM1 ) = SINR
  732:                WORK( I-LL+1+NM12 ) = COSL
  733:                WORK( I-LL+1+NM13 ) = SINL
  734:   140       CONTINUE
  735:             E( M-1 ) = F
  736: *
  737: *           Update singular vectors
  738: *
  739:             IF( NCVT.GT.0 )
  740:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ),
  741:      $                     WORK( N ), VT( LL, 1 ), LDVT )
  742:             IF( NRU.GT.0 )
  743:      $         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ),
  744:      $                     WORK( NM13+1 ), U( 1, LL ), LDU )
  745:             IF( NCC.GT.0 )
  746:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ),
  747:      $                     WORK( NM13+1 ), C( LL, 1 ), LDC )
  748: *
  749: *           Test convergence
  750: *
  751:             IF( ABS( E( M-1 ) ).LE.THRESH )
  752:      $         E( M-1 ) = ZERO
  753: *
  754:          ELSE
  755: *
  756: *           Chase bulge from bottom to top
  757: *           Save cosines and sines for later singular vector updates
  758: *
  759:             F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
  760:      $          D( M ) )
  761:             G = E( M-1 )
  762:             DO 150 I = M, LL + 1, -1
  763:                CALL DLARTG( F, G, COSR, SINR, R )
  764:                IF( I.LT.M )
  765:      $            E( I ) = R
  766:                F = COSR*D( I ) + SINR*E( I-1 )
  767:                E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
  768:                G = SINR*D( I-1 )
  769:                D( I-1 ) = COSR*D( I-1 )
  770:                CALL DLARTG( F, G, COSL, SINL, R )
  771:                D( I ) = R
  772:                F = COSL*E( I-1 ) + SINL*D( I-1 )
  773:                D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
  774:                IF( I.GT.LL+1 ) THEN
  775:                   G = SINL*E( I-2 )
  776:                   E( I-2 ) = COSL*E( I-2 )
  777:                END IF
  778:                WORK( I-LL ) = COSR
  779:                WORK( I-LL+NM1 ) = -SINR
  780:                WORK( I-LL+NM12 ) = COSL
  781:                WORK( I-LL+NM13 ) = -SINL
  782:   150       CONTINUE
  783:             E( LL ) = F
  784: *
  785: *           Test convergence
  786: *
  787:             IF( ABS( E( LL ) ).LE.THRESH )
  788:      $         E( LL ) = ZERO
  789: *
  790: *           Update singular vectors if desired
  791: *
  792:             IF( NCVT.GT.0 )
  793:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ),
  794:      $                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
  795:             IF( NRU.GT.0 )
  796:      $         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ),
  797:      $                     WORK( N ), U( 1, LL ), LDU )
  798:             IF( NCC.GT.0 )
  799:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ),
  800:      $                     WORK( N ), C( LL, 1 ), LDC )
  801:          END IF
  802:       END IF
  803: *
  804: *     QR iteration finished, go back and check convergence
  805: *
  806:       GO TO 60
  807: *
  808: *     All singular values converged, so make them positive
  809: *
  810:   160 CONTINUE
  811:       DO 170 I = 1, N
  812:          IF( D( I ).LT.ZERO ) THEN
  813:             D( I ) = -D( I )
  814: *
  815: *           Change sign of singular vectors, if desired
  816: *
  817:             IF( NCVT.GT.0 )
  818:      $         CALL DSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
  819:          END IF
  820:   170 CONTINUE
  821: *
  822: *     Sort the singular values into decreasing order (insertion sort on
  823: *     singular values, but only one transposition per singular vector)
  824: *
  825:       DO 190 I = 1, N - 1
  826: *
  827: *        Scan for smallest D(I)
  828: *
  829:          ISUB = 1
  830:          SMIN = D( 1 )
  831:          DO 180 J = 2, N + 1 - I
  832:             IF( D( J ).LE.SMIN ) THEN
  833:                ISUB = J
  834:                SMIN = D( J )
  835:             END IF
  836:   180    CONTINUE
  837:          IF( ISUB.NE.N+1-I ) THEN
  838: *
  839: *           Swap singular values and vectors
  840: *
  841:             D( ISUB ) = D( N+1-I )
  842:             D( N+1-I ) = SMIN
  843:             IF( NCVT.GT.0 )
  844:      $         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
  845:      $                     LDVT )
  846:             IF( NRU.GT.0 )
  847:      $         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
  848:             IF( NCC.GT.0 )
  849:      $         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
  850:          END IF
  851:   190 CONTINUE
  852:       GO TO 220
  853: *
  854: *     Maximum number of iterations exceeded, failure to converge
  855: *
  856:   200 CONTINUE
  857:       INFO = 0
  858:       DO 210 I = 1, N - 1
  859:          IF( E( I ).NE.ZERO )
  860:      $      INFO = INFO + 1
  861:   210 CONTINUE
  862:   220 CONTINUE
  863:       RETURN
  864: *
  865: *     End of DBDSQR
  866: *
  867:       END

CVSweb interface <joel.bertrand@systella.fr>