File:  [local] / rpl / lapack / lapack / dbdsqr.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:42:49 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DBDSQR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DBDSQR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsqr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsqr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsqr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
   22: *                          LDU, C, LDC, WORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
   30: *      $                   VT( LDVT, * ), WORK( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DBDSQR computes the singular values and, optionally, the right and/or
   40: *> left singular vectors from the singular value decomposition (SVD) of
   41: *> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
   42: *> zero-shift QR algorithm.  The SVD of B has the form
   43: *> 
   44: *>    B = Q * S * P**T
   45: *> 
   46: *> where S is the diagonal matrix of singular values, Q is an orthogonal
   47: *> matrix of left singular vectors, and P is an orthogonal matrix of
   48: *> right singular vectors.  If left singular vectors are requested, this
   49: *> subroutine actually returns U*Q instead of Q, and, if right singular
   50: *> vectors are requested, this subroutine returns P**T*VT instead of
   51: *> P**T, for given real input matrices U and VT.  When U and VT are the
   52: *> orthogonal matrices that reduce a general matrix A to bidiagonal
   53: *> form:  A = U*B*VT, as computed by DGEBRD, then
   54: *>
   55: *>    A = (U*Q) * S * (P**T*VT)
   56: *>
   57: *> is the SVD of A.  Optionally, the subroutine may also compute Q**T*C
   58: *> for a given real input matrix C.
   59: *>
   60: *> See "Computing  Small Singular Values of Bidiagonal Matrices With
   61: *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
   62: *> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
   63: *> no. 5, pp. 873-912, Sept 1990) and
   64: *> "Accurate singular values and differential qd algorithms," by
   65: *> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
   66: *> Department, University of California at Berkeley, July 1992
   67: *> for a detailed description of the algorithm.
   68: *> \endverbatim
   69: *
   70: *  Arguments:
   71: *  ==========
   72: *
   73: *> \param[in] UPLO
   74: *> \verbatim
   75: *>          UPLO is CHARACTER*1
   76: *>          = 'U':  B is upper bidiagonal;
   77: *>          = 'L':  B is lower bidiagonal.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The order of the matrix B.  N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NCVT
   87: *> \verbatim
   88: *>          NCVT is INTEGER
   89: *>          The number of columns of the matrix VT. NCVT >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] NRU
   93: *> \verbatim
   94: *>          NRU is INTEGER
   95: *>          The number of rows of the matrix U. NRU >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] NCC
   99: *> \verbatim
  100: *>          NCC is INTEGER
  101: *>          The number of columns of the matrix C. NCC >= 0.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] D
  105: *> \verbatim
  106: *>          D is DOUBLE PRECISION array, dimension (N)
  107: *>          On entry, the n diagonal elements of the bidiagonal matrix B.
  108: *>          On exit, if INFO=0, the singular values of B in decreasing
  109: *>          order.
  110: *> \endverbatim
  111: *>
  112: *> \param[in,out] E
  113: *> \verbatim
  114: *>          E is DOUBLE PRECISION array, dimension (N-1)
  115: *>          On entry, the N-1 offdiagonal elements of the bidiagonal
  116: *>          matrix B. 
  117: *>          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
  118: *>          will contain the diagonal and superdiagonal elements of a
  119: *>          bidiagonal matrix orthogonally equivalent to the one given
  120: *>          as input.
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] VT
  124: *> \verbatim
  125: *>          VT is DOUBLE PRECISION array, dimension (LDVT, NCVT)
  126: *>          On entry, an N-by-NCVT matrix VT.
  127: *>          On exit, VT is overwritten by P**T * VT.
  128: *>          Not referenced if NCVT = 0.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDVT
  132: *> \verbatim
  133: *>          LDVT is INTEGER
  134: *>          The leading dimension of the array VT.
  135: *>          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] U
  139: *> \verbatim
  140: *>          U is DOUBLE PRECISION array, dimension (LDU, N)
  141: *>          On entry, an NRU-by-N matrix U.
  142: *>          On exit, U is overwritten by U * Q.
  143: *>          Not referenced if NRU = 0.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDU
  147: *> \verbatim
  148: *>          LDU is INTEGER
  149: *>          The leading dimension of the array U.  LDU >= max(1,NRU).
  150: *> \endverbatim
  151: *>
  152: *> \param[in,out] C
  153: *> \verbatim
  154: *>          C is DOUBLE PRECISION array, dimension (LDC, NCC)
  155: *>          On entry, an N-by-NCC matrix C.
  156: *>          On exit, C is overwritten by Q**T * C.
  157: *>          Not referenced if NCC = 0.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] LDC
  161: *> \verbatim
  162: *>          LDC is INTEGER
  163: *>          The leading dimension of the array C.
  164: *>          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] WORK
  168: *> \verbatim
  169: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
  170: *> \endverbatim
  171: *>
  172: *> \param[out] INFO
  173: *> \verbatim
  174: *>          INFO is INTEGER
  175: *>          = 0:  successful exit
  176: *>          < 0:  If INFO = -i, the i-th argument had an illegal value
  177: *>          > 0:
  178: *>             if NCVT = NRU = NCC = 0,
  179: *>                = 1, a split was marked by a positive value in E
  180: *>                = 2, current block of Z not diagonalized after 30*N
  181: *>                     iterations (in inner while loop)
  182: *>                = 3, termination criterion of outer while loop not met 
  183: *>                     (program created more than N unreduced blocks)
  184: *>             else NCVT = NRU = NCC = 0,
  185: *>                   the algorithm did not converge; D and E contain the
  186: *>                   elements of a bidiagonal matrix which is orthogonally
  187: *>                   similar to the input matrix B;  if INFO = i, i
  188: *>                   elements of E have not converged to zero.
  189: *> \endverbatim
  190: *
  191: *> \par Internal Parameters:
  192: *  =========================
  193: *>
  194: *> \verbatim
  195: *>  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
  196: *>          TOLMUL controls the convergence criterion of the QR loop.
  197: *>          If it is positive, TOLMUL*EPS is the desired relative
  198: *>             precision in the computed singular values.
  199: *>          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
  200: *>             desired absolute accuracy in the computed singular
  201: *>             values (corresponds to relative accuracy
  202: *>             abs(TOLMUL*EPS) in the largest singular value.
  203: *>          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
  204: *>             between 10 (for fast convergence) and .1/EPS
  205: *>             (for there to be some accuracy in the results).
  206: *>          Default is to lose at either one eighth or 2 of the
  207: *>             available decimal digits in each computed singular value
  208: *>             (whichever is smaller).
  209: *>
  210: *>  MAXITR  INTEGER, default = 6
  211: *>          MAXITR controls the maximum number of passes of the
  212: *>          algorithm through its inner loop. The algorithms stops
  213: *>          (and so fails to converge) if the number of passes
  214: *>          through the inner loop exceeds MAXITR*N**2.
  215: *> \endverbatim
  216: *
  217: *  Authors:
  218: *  ========
  219: *
  220: *> \author Univ. of Tennessee 
  221: *> \author Univ. of California Berkeley 
  222: *> \author Univ. of Colorado Denver 
  223: *> \author NAG Ltd. 
  224: *
  225: *> \date November 2011
  226: *
  227: *> \ingroup auxOTHERcomputational
  228: *
  229: *  =====================================================================
  230:       SUBROUTINE DBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
  231:      $                   LDU, C, LDC, WORK, INFO )
  232: *
  233: *  -- LAPACK computational routine (version 3.4.0) --
  234: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  235: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  236: *     November 2011
  237: *
  238: *     .. Scalar Arguments ..
  239:       CHARACTER          UPLO
  240:       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
  241: *     ..
  242: *     .. Array Arguments ..
  243:       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
  244:      $                   VT( LDVT, * ), WORK( * )
  245: *     ..
  246: *
  247: *  =====================================================================
  248: *
  249: *     .. Parameters ..
  250:       DOUBLE PRECISION   ZERO
  251:       PARAMETER          ( ZERO = 0.0D0 )
  252:       DOUBLE PRECISION   ONE
  253:       PARAMETER          ( ONE = 1.0D0 )
  254:       DOUBLE PRECISION   NEGONE
  255:       PARAMETER          ( NEGONE = -1.0D0 )
  256:       DOUBLE PRECISION   HNDRTH
  257:       PARAMETER          ( HNDRTH = 0.01D0 )
  258:       DOUBLE PRECISION   TEN
  259:       PARAMETER          ( TEN = 10.0D0 )
  260:       DOUBLE PRECISION   HNDRD
  261:       PARAMETER          ( HNDRD = 100.0D0 )
  262:       DOUBLE PRECISION   MEIGTH
  263:       PARAMETER          ( MEIGTH = -0.125D0 )
  264:       INTEGER            MAXITR
  265:       PARAMETER          ( MAXITR = 6 )
  266: *     ..
  267: *     .. Local Scalars ..
  268:       LOGICAL            LOWER, ROTATE
  269:       INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
  270:      $                   NM12, NM13, OLDLL, OLDM
  271:       DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
  272:      $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
  273:      $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
  274:      $                   SN, THRESH, TOL, TOLMUL, UNFL
  275: *     ..
  276: *     .. External Functions ..
  277:       LOGICAL            LSAME
  278:       DOUBLE PRECISION   DLAMCH
  279:       EXTERNAL           LSAME, DLAMCH
  280: *     ..
  281: *     .. External Subroutines ..
  282:       EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASR, DLASV2, DROT,
  283:      $                   DSCAL, DSWAP, XERBLA
  284: *     ..
  285: *     .. Intrinsic Functions ..
  286:       INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
  287: *     ..
  288: *     .. Executable Statements ..
  289: *
  290: *     Test the input parameters.
  291: *
  292:       INFO = 0
  293:       LOWER = LSAME( UPLO, 'L' )
  294:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
  295:          INFO = -1
  296:       ELSE IF( N.LT.0 ) THEN
  297:          INFO = -2
  298:       ELSE IF( NCVT.LT.0 ) THEN
  299:          INFO = -3
  300:       ELSE IF( NRU.LT.0 ) THEN
  301:          INFO = -4
  302:       ELSE IF( NCC.LT.0 ) THEN
  303:          INFO = -5
  304:       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
  305:      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
  306:          INFO = -9
  307:       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
  308:          INFO = -11
  309:       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
  310:      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
  311:          INFO = -13
  312:       END IF
  313:       IF( INFO.NE.0 ) THEN
  314:          CALL XERBLA( 'DBDSQR', -INFO )
  315:          RETURN
  316:       END IF
  317:       IF( N.EQ.0 )
  318:      $   RETURN
  319:       IF( N.EQ.1 )
  320:      $   GO TO 160
  321: *
  322: *     ROTATE is true if any singular vectors desired, false otherwise
  323: *
  324:       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
  325: *
  326: *     If no singular vectors desired, use qd algorithm
  327: *
  328:       IF( .NOT.ROTATE ) THEN
  329:          CALL DLASQ1( N, D, E, WORK, INFO )
  330: *
  331: *     If INFO equals 2, dqds didn't finish, try to finish
  332: *         
  333:          IF( INFO .NE. 2 ) RETURN
  334:          INFO = 0
  335:       END IF
  336: *
  337:       NM1 = N - 1
  338:       NM12 = NM1 + NM1
  339:       NM13 = NM12 + NM1
  340:       IDIR = 0
  341: *
  342: *     Get machine constants
  343: *
  344:       EPS = DLAMCH( 'Epsilon' )
  345:       UNFL = DLAMCH( 'Safe minimum' )
  346: *
  347: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
  348: *     by applying Givens rotations on the left
  349: *
  350:       IF( LOWER ) THEN
  351:          DO 10 I = 1, N - 1
  352:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  353:             D( I ) = R
  354:             E( I ) = SN*D( I+1 )
  355:             D( I+1 ) = CS*D( I+1 )
  356:             WORK( I ) = CS
  357:             WORK( NM1+I ) = SN
  358:    10    CONTINUE
  359: *
  360: *        Update singular vectors if desired
  361: *
  362:          IF( NRU.GT.0 )
  363:      $      CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ), WORK( N ), U,
  364:      $                  LDU )
  365:          IF( NCC.GT.0 )
  366:      $      CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ), WORK( N ), C,
  367:      $                  LDC )
  368:       END IF
  369: *
  370: *     Compute singular values to relative accuracy TOL
  371: *     (By setting TOL to be negative, algorithm will compute
  372: *     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
  373: *
  374:       TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
  375:       TOL = TOLMUL*EPS
  376: *
  377: *     Compute approximate maximum, minimum singular values
  378: *
  379:       SMAX = ZERO
  380:       DO 20 I = 1, N
  381:          SMAX = MAX( SMAX, ABS( D( I ) ) )
  382:    20 CONTINUE
  383:       DO 30 I = 1, N - 1
  384:          SMAX = MAX( SMAX, ABS( E( I ) ) )
  385:    30 CONTINUE
  386:       SMINL = ZERO
  387:       IF( TOL.GE.ZERO ) THEN
  388: *
  389: *        Relative accuracy desired
  390: *
  391:          SMINOA = ABS( D( 1 ) )
  392:          IF( SMINOA.EQ.ZERO )
  393:      $      GO TO 50
  394:          MU = SMINOA
  395:          DO 40 I = 2, N
  396:             MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
  397:             SMINOA = MIN( SMINOA, MU )
  398:             IF( SMINOA.EQ.ZERO )
  399:      $         GO TO 50
  400:    40    CONTINUE
  401:    50    CONTINUE
  402:          SMINOA = SMINOA / SQRT( DBLE( N ) )
  403:          THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
  404:       ELSE
  405: *
  406: *        Absolute accuracy desired
  407: *
  408:          THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
  409:       END IF
  410: *
  411: *     Prepare for main iteration loop for the singular values
  412: *     (MAXIT is the maximum number of passes through the inner
  413: *     loop permitted before nonconvergence signalled.)
  414: *
  415:       MAXIT = MAXITR*N*N
  416:       ITER = 0
  417:       OLDLL = -1
  418:       OLDM = -1
  419: *
  420: *     M points to last element of unconverged part of matrix
  421: *
  422:       M = N
  423: *
  424: *     Begin main iteration loop
  425: *
  426:    60 CONTINUE
  427: *
  428: *     Check for convergence or exceeding iteration count
  429: *
  430:       IF( M.LE.1 )
  431:      $   GO TO 160
  432:       IF( ITER.GT.MAXIT )
  433:      $   GO TO 200
  434: *
  435: *     Find diagonal block of matrix to work on
  436: *
  437:       IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
  438:      $   D( M ) = ZERO
  439:       SMAX = ABS( D( M ) )
  440:       SMIN = SMAX
  441:       DO 70 LLL = 1, M - 1
  442:          LL = M - LLL
  443:          ABSS = ABS( D( LL ) )
  444:          ABSE = ABS( E( LL ) )
  445:          IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
  446:      $      D( LL ) = ZERO
  447:          IF( ABSE.LE.THRESH )
  448:      $      GO TO 80
  449:          SMIN = MIN( SMIN, ABSS )
  450:          SMAX = MAX( SMAX, ABSS, ABSE )
  451:    70 CONTINUE
  452:       LL = 0
  453:       GO TO 90
  454:    80 CONTINUE
  455:       E( LL ) = ZERO
  456: *
  457: *     Matrix splits since E(LL) = 0
  458: *
  459:       IF( LL.EQ.M-1 ) THEN
  460: *
  461: *        Convergence of bottom singular value, return to top of loop
  462: *
  463:          M = M - 1
  464:          GO TO 60
  465:       END IF
  466:    90 CONTINUE
  467:       LL = LL + 1
  468: *
  469: *     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
  470: *
  471:       IF( LL.EQ.M-1 ) THEN
  472: *
  473: *        2 by 2 block, handle separately
  474: *
  475:          CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
  476:      $                COSR, SINL, COSL )
  477:          D( M-1 ) = SIGMX
  478:          E( M-1 ) = ZERO
  479:          D( M ) = SIGMN
  480: *
  481: *        Compute singular vectors, if desired
  482: *
  483:          IF( NCVT.GT.0 )
  484:      $      CALL DROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT, COSR,
  485:      $                 SINR )
  486:          IF( NRU.GT.0 )
  487:      $      CALL DROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
  488:          IF( NCC.GT.0 )
  489:      $      CALL DROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
  490:      $                 SINL )
  491:          M = M - 2
  492:          GO TO 60
  493:       END IF
  494: *
  495: *     If working on new submatrix, choose shift direction
  496: *     (from larger end diagonal element towards smaller)
  497: *
  498:       IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
  499:          IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
  500: *
  501: *           Chase bulge from top (big end) to bottom (small end)
  502: *
  503:             IDIR = 1
  504:          ELSE
  505: *
  506: *           Chase bulge from bottom (big end) to top (small end)
  507: *
  508:             IDIR = 2
  509:          END IF
  510:       END IF
  511: *
  512: *     Apply convergence tests
  513: *
  514:       IF( IDIR.EQ.1 ) THEN
  515: *
  516: *        Run convergence test in forward direction
  517: *        First apply standard test to bottom of matrix
  518: *
  519:          IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
  520:      $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
  521:             E( M-1 ) = ZERO
  522:             GO TO 60
  523:          END IF
  524: *
  525:          IF( TOL.GE.ZERO ) THEN
  526: *
  527: *           If relative accuracy desired,
  528: *           apply convergence criterion forward
  529: *
  530:             MU = ABS( D( LL ) )
  531:             SMINL = MU
  532:             DO 100 LLL = LL, M - 1
  533:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  534:                   E( LLL ) = ZERO
  535:                   GO TO 60
  536:                END IF
  537:                MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  538:                SMINL = MIN( SMINL, MU )
  539:   100       CONTINUE
  540:          END IF
  541: *
  542:       ELSE
  543: *
  544: *        Run convergence test in backward direction
  545: *        First apply standard test to top of matrix
  546: *
  547:          IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
  548:      $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
  549:             E( LL ) = ZERO
  550:             GO TO 60
  551:          END IF
  552: *
  553:          IF( TOL.GE.ZERO ) THEN
  554: *
  555: *           If relative accuracy desired,
  556: *           apply convergence criterion backward
  557: *
  558:             MU = ABS( D( M ) )
  559:             SMINL = MU
  560:             DO 110 LLL = M - 1, LL, -1
  561:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  562:                   E( LLL ) = ZERO
  563:                   GO TO 60
  564:                END IF
  565:                MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  566:                SMINL = MIN( SMINL, MU )
  567:   110       CONTINUE
  568:          END IF
  569:       END IF
  570:       OLDLL = LL
  571:       OLDM = M
  572: *
  573: *     Compute shift.  First, test if shifting would ruin relative
  574: *     accuracy, and if so set the shift to zero.
  575: *
  576:       IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
  577:      $    MAX( EPS, HNDRTH*TOL ) ) THEN
  578: *
  579: *        Use a zero shift to avoid loss of relative accuracy
  580: *
  581:          SHIFT = ZERO
  582:       ELSE
  583: *
  584: *        Compute the shift from 2-by-2 block at end of matrix
  585: *
  586:          IF( IDIR.EQ.1 ) THEN
  587:             SLL = ABS( D( LL ) )
  588:             CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
  589:          ELSE
  590:             SLL = ABS( D( M ) )
  591:             CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
  592:          END IF
  593: *
  594: *        Test if shift negligible, and if so set to zero
  595: *
  596:          IF( SLL.GT.ZERO ) THEN
  597:             IF( ( SHIFT / SLL )**2.LT.EPS )
  598:      $         SHIFT = ZERO
  599:          END IF
  600:       END IF
  601: *
  602: *     Increment iteration count
  603: *
  604:       ITER = ITER + M - LL
  605: *
  606: *     If SHIFT = 0, do simplified QR iteration
  607: *
  608:       IF( SHIFT.EQ.ZERO ) THEN
  609:          IF( IDIR.EQ.1 ) THEN
  610: *
  611: *           Chase bulge from top to bottom
  612: *           Save cosines and sines for later singular vector updates
  613: *
  614:             CS = ONE
  615:             OLDCS = ONE
  616:             DO 120 I = LL, M - 1
  617:                CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
  618:                IF( I.GT.LL )
  619:      $            E( I-1 ) = OLDSN*R
  620:                CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
  621:                WORK( I-LL+1 ) = CS
  622:                WORK( I-LL+1+NM1 ) = SN
  623:                WORK( I-LL+1+NM12 ) = OLDCS
  624:                WORK( I-LL+1+NM13 ) = OLDSN
  625:   120       CONTINUE
  626:             H = D( M )*CS
  627:             D( M ) = H*OLDCS
  628:             E( M-1 ) = H*OLDSN
  629: *
  630: *           Update singular vectors
  631: *
  632:             IF( NCVT.GT.0 )
  633:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ),
  634:      $                     WORK( N ), VT( LL, 1 ), LDVT )
  635:             IF( NRU.GT.0 )
  636:      $         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ),
  637:      $                     WORK( NM13+1 ), U( 1, LL ), LDU )
  638:             IF( NCC.GT.0 )
  639:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ),
  640:      $                     WORK( NM13+1 ), C( LL, 1 ), LDC )
  641: *
  642: *           Test convergence
  643: *
  644:             IF( ABS( E( M-1 ) ).LE.THRESH )
  645:      $         E( M-1 ) = ZERO
  646: *
  647:          ELSE
  648: *
  649: *           Chase bulge from bottom to top
  650: *           Save cosines and sines for later singular vector updates
  651: *
  652:             CS = ONE
  653:             OLDCS = ONE
  654:             DO 130 I = M, LL + 1, -1
  655:                CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
  656:                IF( I.LT.M )
  657:      $            E( I ) = OLDSN*R
  658:                CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
  659:                WORK( I-LL ) = CS
  660:                WORK( I-LL+NM1 ) = -SN
  661:                WORK( I-LL+NM12 ) = OLDCS
  662:                WORK( I-LL+NM13 ) = -OLDSN
  663:   130       CONTINUE
  664:             H = D( LL )*CS
  665:             D( LL ) = H*OLDCS
  666:             E( LL ) = H*OLDSN
  667: *
  668: *           Update singular vectors
  669: *
  670:             IF( NCVT.GT.0 )
  671:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ),
  672:      $                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
  673:             IF( NRU.GT.0 )
  674:      $         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ),
  675:      $                     WORK( N ), U( 1, LL ), LDU )
  676:             IF( NCC.GT.0 )
  677:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ),
  678:      $                     WORK( N ), C( LL, 1 ), LDC )
  679: *
  680: *           Test convergence
  681: *
  682:             IF( ABS( E( LL ) ).LE.THRESH )
  683:      $         E( LL ) = ZERO
  684:          END IF
  685:       ELSE
  686: *
  687: *        Use nonzero shift
  688: *
  689:          IF( IDIR.EQ.1 ) THEN
  690: *
  691: *           Chase bulge from top to bottom
  692: *           Save cosines and sines for later singular vector updates
  693: *
  694:             F = ( ABS( D( LL ) )-SHIFT )*
  695:      $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
  696:             G = E( LL )
  697:             DO 140 I = LL, M - 1
  698:                CALL DLARTG( F, G, COSR, SINR, R )
  699:                IF( I.GT.LL )
  700:      $            E( I-1 ) = R
  701:                F = COSR*D( I ) + SINR*E( I )
  702:                E( I ) = COSR*E( I ) - SINR*D( I )
  703:                G = SINR*D( I+1 )
  704:                D( I+1 ) = COSR*D( I+1 )
  705:                CALL DLARTG( F, G, COSL, SINL, R )
  706:                D( I ) = R
  707:                F = COSL*E( I ) + SINL*D( I+1 )
  708:                D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
  709:                IF( I.LT.M-1 ) THEN
  710:                   G = SINL*E( I+1 )
  711:                   E( I+1 ) = COSL*E( I+1 )
  712:                END IF
  713:                WORK( I-LL+1 ) = COSR
  714:                WORK( I-LL+1+NM1 ) = SINR
  715:                WORK( I-LL+1+NM12 ) = COSL
  716:                WORK( I-LL+1+NM13 ) = SINL
  717:   140       CONTINUE
  718:             E( M-1 ) = F
  719: *
  720: *           Update singular vectors
  721: *
  722:             IF( NCVT.GT.0 )
  723:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ),
  724:      $                     WORK( N ), VT( LL, 1 ), LDVT )
  725:             IF( NRU.GT.0 )
  726:      $         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ),
  727:      $                     WORK( NM13+1 ), U( 1, LL ), LDU )
  728:             IF( NCC.GT.0 )
  729:      $         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ),
  730:      $                     WORK( NM13+1 ), C( LL, 1 ), LDC )
  731: *
  732: *           Test convergence
  733: *
  734:             IF( ABS( E( M-1 ) ).LE.THRESH )
  735:      $         E( M-1 ) = ZERO
  736: *
  737:          ELSE
  738: *
  739: *           Chase bulge from bottom to top
  740: *           Save cosines and sines for later singular vector updates
  741: *
  742:             F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
  743:      $          D( M ) )
  744:             G = E( M-1 )
  745:             DO 150 I = M, LL + 1, -1
  746:                CALL DLARTG( F, G, COSR, SINR, R )
  747:                IF( I.LT.M )
  748:      $            E( I ) = R
  749:                F = COSR*D( I ) + SINR*E( I-1 )
  750:                E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
  751:                G = SINR*D( I-1 )
  752:                D( I-1 ) = COSR*D( I-1 )
  753:                CALL DLARTG( F, G, COSL, SINL, R )
  754:                D( I ) = R
  755:                F = COSL*E( I-1 ) + SINL*D( I-1 )
  756:                D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
  757:                IF( I.GT.LL+1 ) THEN
  758:                   G = SINL*E( I-2 )
  759:                   E( I-2 ) = COSL*E( I-2 )
  760:                END IF
  761:                WORK( I-LL ) = COSR
  762:                WORK( I-LL+NM1 ) = -SINR
  763:                WORK( I-LL+NM12 ) = COSL
  764:                WORK( I-LL+NM13 ) = -SINL
  765:   150       CONTINUE
  766:             E( LL ) = F
  767: *
  768: *           Test convergence
  769: *
  770:             IF( ABS( E( LL ) ).LE.THRESH )
  771:      $         E( LL ) = ZERO
  772: *
  773: *           Update singular vectors if desired
  774: *
  775:             IF( NCVT.GT.0 )
  776:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ),
  777:      $                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
  778:             IF( NRU.GT.0 )
  779:      $         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ),
  780:      $                     WORK( N ), U( 1, LL ), LDU )
  781:             IF( NCC.GT.0 )
  782:      $         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ),
  783:      $                     WORK( N ), C( LL, 1 ), LDC )
  784:          END IF
  785:       END IF
  786: *
  787: *     QR iteration finished, go back and check convergence
  788: *
  789:       GO TO 60
  790: *
  791: *     All singular values converged, so make them positive
  792: *
  793:   160 CONTINUE
  794:       DO 170 I = 1, N
  795:          IF( D( I ).LT.ZERO ) THEN
  796:             D( I ) = -D( I )
  797: *
  798: *           Change sign of singular vectors, if desired
  799: *
  800:             IF( NCVT.GT.0 )
  801:      $         CALL DSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
  802:          END IF
  803:   170 CONTINUE
  804: *
  805: *     Sort the singular values into decreasing order (insertion sort on
  806: *     singular values, but only one transposition per singular vector)
  807: *
  808:       DO 190 I = 1, N - 1
  809: *
  810: *        Scan for smallest D(I)
  811: *
  812:          ISUB = 1
  813:          SMIN = D( 1 )
  814:          DO 180 J = 2, N + 1 - I
  815:             IF( D( J ).LE.SMIN ) THEN
  816:                ISUB = J
  817:                SMIN = D( J )
  818:             END IF
  819:   180    CONTINUE
  820:          IF( ISUB.NE.N+1-I ) THEN
  821: *
  822: *           Swap singular values and vectors
  823: *
  824:             D( ISUB ) = D( N+1-I )
  825:             D( N+1-I ) = SMIN
  826:             IF( NCVT.GT.0 )
  827:      $         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
  828:      $                     LDVT )
  829:             IF( NRU.GT.0 )
  830:      $         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
  831:             IF( NCC.GT.0 )
  832:      $         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
  833:          END IF
  834:   190 CONTINUE
  835:       GO TO 220
  836: *
  837: *     Maximum number of iterations exceeded, failure to converge
  838: *
  839:   200 CONTINUE
  840:       INFO = 0
  841:       DO 210 I = 1, N - 1
  842:          IF( E( I ).NE.ZERO )
  843:      $      INFO = INFO + 1
  844:   210 CONTINUE
  845:   220 CONTINUE
  846:       RETURN
  847: *
  848: *     End of DBDSQR
  849: *
  850:       END

CVSweb interface <joel.bertrand@systella.fr>