File:  [local] / rpl / lapack / lapack / dbdsdc.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:24 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
    2:      $                   WORK, IWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     June 2010
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          COMPQ, UPLO
   11:       INTEGER            INFO, LDU, LDVT, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            IQ( * ), IWORK( * )
   15:       DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
   16:      $                   VT( LDVT, * ), WORK( * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  DBDSDC computes the singular value decomposition (SVD) of a real
   23: *  N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT,
   24: *  using a divide and conquer method, where S is a diagonal matrix
   25: *  with non-negative diagonal elements (the singular values of B), and
   26: *  U and VT are orthogonal matrices of left and right singular vectors,
   27: *  respectively. DBDSDC can be used to compute all singular values,
   28: *  and optionally, singular vectors or singular vectors in compact form.
   29: *
   30: *  This code makes very mild assumptions about floating point
   31: *  arithmetic. It will work on machines with a guard digit in
   32: *  add/subtract, or on those binary machines without guard digits
   33: *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
   34: *  It could conceivably fail on hexadecimal or decimal machines
   35: *  without guard digits, but we know of none.  See DLASD3 for details.
   36: *
   37: *  The code currently calls DLASDQ if singular values only are desired.
   38: *  However, it can be slightly modified to compute singular values
   39: *  using the divide and conquer method.
   40: *
   41: *  Arguments
   42: *  =========
   43: *
   44: *  UPLO    (input) CHARACTER*1
   45: *          = 'U':  B is upper bidiagonal.
   46: *          = 'L':  B is lower bidiagonal.
   47: *
   48: *  COMPQ   (input) CHARACTER*1
   49: *          Specifies whether singular vectors are to be computed
   50: *          as follows:
   51: *          = 'N':  Compute singular values only;
   52: *          = 'P':  Compute singular values and compute singular
   53: *                  vectors in compact form;
   54: *          = 'I':  Compute singular values and singular vectors.
   55: *
   56: *  N       (input) INTEGER
   57: *          The order of the matrix B.  N >= 0.
   58: *
   59: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
   60: *          On entry, the n diagonal elements of the bidiagonal matrix B.
   61: *          On exit, if INFO=0, the singular values of B.
   62: *
   63: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
   64: *          On entry, the elements of E contain the offdiagonal
   65: *          elements of the bidiagonal matrix whose SVD is desired.
   66: *          On exit, E has been destroyed.
   67: *
   68: *  U       (output) DOUBLE PRECISION array, dimension (LDU,N)
   69: *          If  COMPQ = 'I', then:
   70: *             On exit, if INFO = 0, U contains the left singular vectors
   71: *             of the bidiagonal matrix.
   72: *          For other values of COMPQ, U is not referenced.
   73: *
   74: *  LDU     (input) INTEGER
   75: *          The leading dimension of the array U.  LDU >= 1.
   76: *          If singular vectors are desired, then LDU >= max( 1, N ).
   77: *
   78: *  VT      (output) DOUBLE PRECISION array, dimension (LDVT,N)
   79: *          If  COMPQ = 'I', then:
   80: *             On exit, if INFO = 0, VT' contains the right singular
   81: *             vectors of the bidiagonal matrix.
   82: *          For other values of COMPQ, VT is not referenced.
   83: *
   84: *  LDVT    (input) INTEGER
   85: *          The leading dimension of the array VT.  LDVT >= 1.
   86: *          If singular vectors are desired, then LDVT >= max( 1, N ).
   87: *
   88: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ)
   89: *          If  COMPQ = 'P', then:
   90: *             On exit, if INFO = 0, Q and IQ contain the left
   91: *             and right singular vectors in a compact form,
   92: *             requiring O(N log N) space instead of 2*N**2.
   93: *             In particular, Q contains all the DOUBLE PRECISION data in
   94: *             LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
   95: *             words of memory, where SMLSIZ is returned by ILAENV and
   96: *             is equal to the maximum size of the subproblems at the
   97: *             bottom of the computation tree (usually about 25).
   98: *          For other values of COMPQ, Q is not referenced.
   99: *
  100: *  IQ      (output) INTEGER array, dimension (LDIQ)
  101: *          If  COMPQ = 'P', then:
  102: *             On exit, if INFO = 0, Q and IQ contain the left
  103: *             and right singular vectors in a compact form,
  104: *             requiring O(N log N) space instead of 2*N**2.
  105: *             In particular, IQ contains all INTEGER data in
  106: *             LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
  107: *             words of memory, where SMLSIZ is returned by ILAENV and
  108: *             is equal to the maximum size of the subproblems at the
  109: *             bottom of the computation tree (usually about 25).
  110: *          For other values of COMPQ, IQ is not referenced.
  111: *
  112: *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  113: *          If COMPQ = 'N' then LWORK >= (4 * N).
  114: *          If COMPQ = 'P' then LWORK >= (6 * N).
  115: *          If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
  116: *
  117: *  IWORK   (workspace) INTEGER array, dimension (8*N)
  118: *
  119: *  INFO    (output) INTEGER
  120: *          = 0:  successful exit.
  121: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  122: *          > 0:  The algorithm failed to compute a singular value.
  123: *                The update process of divide and conquer failed.
  124: *
  125: *  Further Details
  126: *  ===============
  127: *
  128: *  Based on contributions by
  129: *     Ming Gu and Huan Ren, Computer Science Division, University of
  130: *     California at Berkeley, USA
  131: *
  132: *  =====================================================================
  133: *  Changed dimension statement in comment describing E from (N) to
  134: *  (N-1).  Sven, 17 Feb 05.
  135: *  =====================================================================
  136: *
  137: *     .. Parameters ..
  138:       DOUBLE PRECISION   ZERO, ONE, TWO
  139:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  140: *     ..
  141: *     .. Local Scalars ..
  142:       INTEGER            DIFL, DIFR, GIVCOL, GIVNUM, GIVPTR, I, IC,
  143:      $                   ICOMPQ, IERR, II, IS, IU, IUPLO, IVT, J, K, KK,
  144:      $                   MLVL, NM1, NSIZE, PERM, POLES, QSTART, SMLSIZ,
  145:      $                   SMLSZP, SQRE, START, WSTART, Z
  146:       DOUBLE PRECISION   CS, EPS, ORGNRM, P, R, SN
  147: *     ..
  148: *     .. External Functions ..
  149:       LOGICAL            LSAME
  150:       INTEGER            ILAENV
  151:       DOUBLE PRECISION   DLAMCH, DLANST
  152:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
  153: *     ..
  154: *     .. External Subroutines ..
  155:       EXTERNAL           DCOPY, DLARTG, DLASCL, DLASD0, DLASDA, DLASDQ,
  156:      $                   DLASET, DLASR, DSWAP, XERBLA
  157: *     ..
  158: *     .. Intrinsic Functions ..
  159:       INTRINSIC          ABS, DBLE, INT, LOG, SIGN
  160: *     ..
  161: *     .. Executable Statements ..
  162: *
  163: *     Test the input parameters.
  164: *
  165:       INFO = 0
  166: *
  167:       IUPLO = 0
  168:       IF( LSAME( UPLO, 'U' ) )
  169:      $   IUPLO = 1
  170:       IF( LSAME( UPLO, 'L' ) )
  171:      $   IUPLO = 2
  172:       IF( LSAME( COMPQ, 'N' ) ) THEN
  173:          ICOMPQ = 0
  174:       ELSE IF( LSAME( COMPQ, 'P' ) ) THEN
  175:          ICOMPQ = 1
  176:       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
  177:          ICOMPQ = 2
  178:       ELSE
  179:          ICOMPQ = -1
  180:       END IF
  181:       IF( IUPLO.EQ.0 ) THEN
  182:          INFO = -1
  183:       ELSE IF( ICOMPQ.LT.0 ) THEN
  184:          INFO = -2
  185:       ELSE IF( N.LT.0 ) THEN
  186:          INFO = -3
  187:       ELSE IF( ( LDU.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDU.LT.
  188:      $         N ) ) ) THEN
  189:          INFO = -7
  190:       ELSE IF( ( LDVT.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDVT.LT.
  191:      $         N ) ) ) THEN
  192:          INFO = -9
  193:       END IF
  194:       IF( INFO.NE.0 ) THEN
  195:          CALL XERBLA( 'DBDSDC', -INFO )
  196:          RETURN
  197:       END IF
  198: *
  199: *     Quick return if possible
  200: *
  201:       IF( N.EQ.0 )
  202:      $   RETURN
  203:       SMLSIZ = ILAENV( 9, 'DBDSDC', ' ', 0, 0, 0, 0 )
  204:       IF( N.EQ.1 ) THEN
  205:          IF( ICOMPQ.EQ.1 ) THEN
  206:             Q( 1 ) = SIGN( ONE, D( 1 ) )
  207:             Q( 1+SMLSIZ*N ) = ONE
  208:          ELSE IF( ICOMPQ.EQ.2 ) THEN
  209:             U( 1, 1 ) = SIGN( ONE, D( 1 ) )
  210:             VT( 1, 1 ) = ONE
  211:          END IF
  212:          D( 1 ) = ABS( D( 1 ) )
  213:          RETURN
  214:       END IF
  215:       NM1 = N - 1
  216: *
  217: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
  218: *     by applying Givens rotations on the left
  219: *
  220:       WSTART = 1
  221:       QSTART = 3
  222:       IF( ICOMPQ.EQ.1 ) THEN
  223:          CALL DCOPY( N, D, 1, Q( 1 ), 1 )
  224:          CALL DCOPY( N-1, E, 1, Q( N+1 ), 1 )
  225:       END IF
  226:       IF( IUPLO.EQ.2 ) THEN
  227:          QSTART = 5
  228:          WSTART = 2*N - 1
  229:          DO 10 I = 1, N - 1
  230:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  231:             D( I ) = R
  232:             E( I ) = SN*D( I+1 )
  233:             D( I+1 ) = CS*D( I+1 )
  234:             IF( ICOMPQ.EQ.1 ) THEN
  235:                Q( I+2*N ) = CS
  236:                Q( I+3*N ) = SN
  237:             ELSE IF( ICOMPQ.EQ.2 ) THEN
  238:                WORK( I ) = CS
  239:                WORK( NM1+I ) = -SN
  240:             END IF
  241:    10    CONTINUE
  242:       END IF
  243: *
  244: *     If ICOMPQ = 0, use DLASDQ to compute the singular values.
  245: *
  246:       IF( ICOMPQ.EQ.0 ) THEN
  247:          CALL DLASDQ( 'U', 0, N, 0, 0, 0, D, E, VT, LDVT, U, LDU, U,
  248:      $                LDU, WORK( WSTART ), INFO )
  249:          GO TO 40
  250:       END IF
  251: *
  252: *     If N is smaller than the minimum divide size SMLSIZ, then solve
  253: *     the problem with another solver.
  254: *
  255:       IF( N.LE.SMLSIZ ) THEN
  256:          IF( ICOMPQ.EQ.2 ) THEN
  257:             CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
  258:             CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
  259:             CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, VT, LDVT, U, LDU, U,
  260:      $                   LDU, WORK( WSTART ), INFO )
  261:          ELSE IF( ICOMPQ.EQ.1 ) THEN
  262:             IU = 1
  263:             IVT = IU + N
  264:             CALL DLASET( 'A', N, N, ZERO, ONE, Q( IU+( QSTART-1 )*N ),
  265:      $                   N )
  266:             CALL DLASET( 'A', N, N, ZERO, ONE, Q( IVT+( QSTART-1 )*N ),
  267:      $                   N )
  268:             CALL DLASDQ( 'U', 0, N, N, N, 0, D, E,
  269:      $                   Q( IVT+( QSTART-1 )*N ), N,
  270:      $                   Q( IU+( QSTART-1 )*N ), N,
  271:      $                   Q( IU+( QSTART-1 )*N ), N, WORK( WSTART ),
  272:      $                   INFO )
  273:          END IF
  274:          GO TO 40
  275:       END IF
  276: *
  277:       IF( ICOMPQ.EQ.2 ) THEN
  278:          CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
  279:          CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
  280:       END IF
  281: *
  282: *     Scale.
  283: *
  284:       ORGNRM = DLANST( 'M', N, D, E )
  285:       IF( ORGNRM.EQ.ZERO )
  286:      $   RETURN
  287:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, IERR )
  288:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, IERR )
  289: *
  290:       EPS = DLAMCH( 'Epsilon' )
  291: *
  292:       MLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
  293:       SMLSZP = SMLSIZ + 1
  294: *
  295:       IF( ICOMPQ.EQ.1 ) THEN
  296:          IU = 1
  297:          IVT = 1 + SMLSIZ
  298:          DIFL = IVT + SMLSZP
  299:          DIFR = DIFL + MLVL
  300:          Z = DIFR + MLVL*2
  301:          IC = Z + MLVL
  302:          IS = IC + 1
  303:          POLES = IS + 1
  304:          GIVNUM = POLES + 2*MLVL
  305: *
  306:          K = 1
  307:          GIVPTR = 2
  308:          PERM = 3
  309:          GIVCOL = PERM + MLVL
  310:       END IF
  311: *
  312:       DO 20 I = 1, N
  313:          IF( ABS( D( I ) ).LT.EPS ) THEN
  314:             D( I ) = SIGN( EPS, D( I ) )
  315:          END IF
  316:    20 CONTINUE
  317: *
  318:       START = 1
  319:       SQRE = 0
  320: *
  321:       DO 30 I = 1, NM1
  322:          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
  323: *
  324: *        Subproblem found. First determine its size and then
  325: *        apply divide and conquer on it.
  326: *
  327:             IF( I.LT.NM1 ) THEN
  328: *
  329: *        A subproblem with E(I) small for I < NM1.
  330: *
  331:                NSIZE = I - START + 1
  332:             ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
  333: *
  334: *        A subproblem with E(NM1) not too small but I = NM1.
  335: *
  336:                NSIZE = N - START + 1
  337:             ELSE
  338: *
  339: *        A subproblem with E(NM1) small. This implies an
  340: *        1-by-1 subproblem at D(N). Solve this 1-by-1 problem
  341: *        first.
  342: *
  343:                NSIZE = I - START + 1
  344:                IF( ICOMPQ.EQ.2 ) THEN
  345:                   U( N, N ) = SIGN( ONE, D( N ) )
  346:                   VT( N, N ) = ONE
  347:                ELSE IF( ICOMPQ.EQ.1 ) THEN
  348:                   Q( N+( QSTART-1 )*N ) = SIGN( ONE, D( N ) )
  349:                   Q( N+( SMLSIZ+QSTART-1 )*N ) = ONE
  350:                END IF
  351:                D( N ) = ABS( D( N ) )
  352:             END IF
  353:             IF( ICOMPQ.EQ.2 ) THEN
  354:                CALL DLASD0( NSIZE, SQRE, D( START ), E( START ),
  355:      $                      U( START, START ), LDU, VT( START, START ),
  356:      $                      LDVT, SMLSIZ, IWORK, WORK( WSTART ), INFO )
  357:             ELSE
  358:                CALL DLASDA( ICOMPQ, SMLSIZ, NSIZE, SQRE, D( START ),
  359:      $                      E( START ), Q( START+( IU+QSTART-2 )*N ), N,
  360:      $                      Q( START+( IVT+QSTART-2 )*N ),
  361:      $                      IQ( START+K*N ), Q( START+( DIFL+QSTART-2 )*
  362:      $                      N ), Q( START+( DIFR+QSTART-2 )*N ),
  363:      $                      Q( START+( Z+QSTART-2 )*N ),
  364:      $                      Q( START+( POLES+QSTART-2 )*N ),
  365:      $                      IQ( START+GIVPTR*N ), IQ( START+GIVCOL*N ),
  366:      $                      N, IQ( START+PERM*N ),
  367:      $                      Q( START+( GIVNUM+QSTART-2 )*N ),
  368:      $                      Q( START+( IC+QSTART-2 )*N ),
  369:      $                      Q( START+( IS+QSTART-2 )*N ),
  370:      $                      WORK( WSTART ), IWORK, INFO )
  371:             END IF
  372:             IF( INFO.NE.0 ) THEN
  373:                RETURN
  374:             END IF
  375:             START = I + 1
  376:          END IF
  377:    30 CONTINUE
  378: *
  379: *     Unscale
  380: *
  381:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, IERR )
  382:    40 CONTINUE
  383: *
  384: *     Use Selection Sort to minimize swaps of singular vectors
  385: *
  386:       DO 60 II = 2, N
  387:          I = II - 1
  388:          KK = I
  389:          P = D( I )
  390:          DO 50 J = II, N
  391:             IF( D( J ).GT.P ) THEN
  392:                KK = J
  393:                P = D( J )
  394:             END IF
  395:    50    CONTINUE
  396:          IF( KK.NE.I ) THEN
  397:             D( KK ) = D( I )
  398:             D( I ) = P
  399:             IF( ICOMPQ.EQ.1 ) THEN
  400:                IQ( I ) = KK
  401:             ELSE IF( ICOMPQ.EQ.2 ) THEN
  402:                CALL DSWAP( N, U( 1, I ), 1, U( 1, KK ), 1 )
  403:                CALL DSWAP( N, VT( I, 1 ), LDVT, VT( KK, 1 ), LDVT )
  404:             END IF
  405:          ELSE IF( ICOMPQ.EQ.1 ) THEN
  406:             IQ( I ) = I
  407:          END IF
  408:    60 CONTINUE
  409: *
  410: *     If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO
  411: *
  412:       IF( ICOMPQ.EQ.1 ) THEN
  413:          IF( IUPLO.EQ.1 ) THEN
  414:             IQ( N ) = 1
  415:          ELSE
  416:             IQ( N ) = 0
  417:          END IF
  418:       END IF
  419: *
  420: *     If B is lower bidiagonal, update U by those Givens rotations
  421: *     which rotated B to be upper bidiagonal
  422: *
  423:       IF( ( IUPLO.EQ.2 ) .AND. ( ICOMPQ.EQ.2 ) )
  424:      $   CALL DLASR( 'L', 'V', 'B', N, N, WORK( 1 ), WORK( N ), U, LDU )
  425: *
  426:       RETURN
  427: *
  428: *     End of DBDSDC
  429: *
  430:       END

CVSweb interface <joel.bertrand@systella.fr>