File:  [local] / rpl / lapack / lapack / dbdsdc.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:47 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DBDSDC
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DBDSDC + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsdc.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsdc.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsdc.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
   22: *                          WORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          COMPQ, UPLO
   26: *       INTEGER            INFO, LDU, LDVT, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IQ( * ), IWORK( * )
   30: *       DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
   31: *      $                   VT( LDVT, * ), WORK( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DBDSDC computes the singular value decomposition (SVD) of a real
   41: *> N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT,
   42: *> using a divide and conquer method, where S is a diagonal matrix
   43: *> with non-negative diagonal elements (the singular values of B), and
   44: *> U and VT are orthogonal matrices of left and right singular vectors,
   45: *> respectively. DBDSDC can be used to compute all singular values,
   46: *> and optionally, singular vectors or singular vectors in compact form.
   47: *>
   48: *> This code makes very mild assumptions about floating point
   49: *> arithmetic. It will work on machines with a guard digit in
   50: *> add/subtract, or on those binary machines without guard digits
   51: *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
   52: *> It could conceivably fail on hexadecimal or decimal machines
   53: *> without guard digits, but we know of none.  See DLASD3 for details.
   54: *>
   55: *> The code currently calls DLASDQ if singular values only are desired.
   56: *> However, it can be slightly modified to compute singular values
   57: *> using the divide and conquer method.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] UPLO
   64: *> \verbatim
   65: *>          UPLO is CHARACTER*1
   66: *>          = 'U':  B is upper bidiagonal.
   67: *>          = 'L':  B is lower bidiagonal.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] COMPQ
   71: *> \verbatim
   72: *>          COMPQ is CHARACTER*1
   73: *>          Specifies whether singular vectors are to be computed
   74: *>          as follows:
   75: *>          = 'N':  Compute singular values only;
   76: *>          = 'P':  Compute singular values and compute singular
   77: *>                  vectors in compact form;
   78: *>          = 'I':  Compute singular values and singular vectors.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] N
   82: *> \verbatim
   83: *>          N is INTEGER
   84: *>          The order of the matrix B.  N >= 0.
   85: *> \endverbatim
   86: *>
   87: *> \param[in,out] D
   88: *> \verbatim
   89: *>          D is DOUBLE PRECISION array, dimension (N)
   90: *>          On entry, the n diagonal elements of the bidiagonal matrix B.
   91: *>          On exit, if INFO=0, the singular values of B.
   92: *> \endverbatim
   93: *>
   94: *> \param[in,out] E
   95: *> \verbatim
   96: *>          E is DOUBLE PRECISION array, dimension (N-1)
   97: *>          On entry, the elements of E contain the offdiagonal
   98: *>          elements of the bidiagonal matrix whose SVD is desired.
   99: *>          On exit, E has been destroyed.
  100: *> \endverbatim
  101: *>
  102: *> \param[out] U
  103: *> \verbatim
  104: *>          U is DOUBLE PRECISION array, dimension (LDU,N)
  105: *>          If  COMPQ = 'I', then:
  106: *>             On exit, if INFO = 0, U contains the left singular vectors
  107: *>             of the bidiagonal matrix.
  108: *>          For other values of COMPQ, U is not referenced.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] LDU
  112: *> \verbatim
  113: *>          LDU is INTEGER
  114: *>          The leading dimension of the array U.  LDU >= 1.
  115: *>          If singular vectors are desired, then LDU >= max( 1, N ).
  116: *> \endverbatim
  117: *>
  118: *> \param[out] VT
  119: *> \verbatim
  120: *>          VT is DOUBLE PRECISION array, dimension (LDVT,N)
  121: *>          If  COMPQ = 'I', then:
  122: *>             On exit, if INFO = 0, VT**T contains the right singular
  123: *>             vectors of the bidiagonal matrix.
  124: *>          For other values of COMPQ, VT is not referenced.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LDVT
  128: *> \verbatim
  129: *>          LDVT is INTEGER
  130: *>          The leading dimension of the array VT.  LDVT >= 1.
  131: *>          If singular vectors are desired, then LDVT >= max( 1, N ).
  132: *> \endverbatim
  133: *>
  134: *> \param[out] Q
  135: *> \verbatim
  136: *>          Q is DOUBLE PRECISION array, dimension (LDQ)
  137: *>          If  COMPQ = 'P', then:
  138: *>             On exit, if INFO = 0, Q and IQ contain the left
  139: *>             and right singular vectors in a compact form,
  140: *>             requiring O(N log N) space instead of 2*N**2.
  141: *>             In particular, Q contains all the DOUBLE PRECISION data in
  142: *>             LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
  143: *>             words of memory, where SMLSIZ is returned by ILAENV and
  144: *>             is equal to the maximum size of the subproblems at the
  145: *>             bottom of the computation tree (usually about 25).
  146: *>          For other values of COMPQ, Q is not referenced.
  147: *> \endverbatim
  148: *>
  149: *> \param[out] IQ
  150: *> \verbatim
  151: *>          IQ is INTEGER array, dimension (LDIQ)
  152: *>          If  COMPQ = 'P', then:
  153: *>             On exit, if INFO = 0, Q and IQ contain the left
  154: *>             and right singular vectors in a compact form,
  155: *>             requiring O(N log N) space instead of 2*N**2.
  156: *>             In particular, IQ contains all INTEGER data in
  157: *>             LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
  158: *>             words of memory, where SMLSIZ is returned by ILAENV and
  159: *>             is equal to the maximum size of the subproblems at the
  160: *>             bottom of the computation tree (usually about 25).
  161: *>          For other values of COMPQ, IQ is not referenced.
  162: *> \endverbatim
  163: *>
  164: *> \param[out] WORK
  165: *> \verbatim
  166: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  167: *>          If COMPQ = 'N' then LWORK >= (4 * N).
  168: *>          If COMPQ = 'P' then LWORK >= (6 * N).
  169: *>          If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
  170: *> \endverbatim
  171: *>
  172: *> \param[out] IWORK
  173: *> \verbatim
  174: *>          IWORK is INTEGER array, dimension (8*N)
  175: *> \endverbatim
  176: *>
  177: *> \param[out] INFO
  178: *> \verbatim
  179: *>          INFO is INTEGER
  180: *>          = 0:  successful exit.
  181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  182: *>          > 0:  The algorithm failed to compute a singular value.
  183: *>                The update process of divide and conquer failed.
  184: *> \endverbatim
  185: *
  186: *  Authors:
  187: *  ========
  188: *
  189: *> \author Univ. of Tennessee
  190: *> \author Univ. of California Berkeley
  191: *> \author Univ. of Colorado Denver
  192: *> \author NAG Ltd.
  193: *
  194: *> \ingroup auxOTHERcomputational
  195: *
  196: *> \par Contributors:
  197: *  ==================
  198: *>
  199: *>     Ming Gu and Huan Ren, Computer Science Division, University of
  200: *>     California at Berkeley, USA
  201: *>
  202: *  =====================================================================
  203:       SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
  204:      $                   WORK, IWORK, INFO )
  205: *
  206: *  -- LAPACK computational routine --
  207: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  208: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  209: *
  210: *     .. Scalar Arguments ..
  211:       CHARACTER          COMPQ, UPLO
  212:       INTEGER            INFO, LDU, LDVT, N
  213: *     ..
  214: *     .. Array Arguments ..
  215:       INTEGER            IQ( * ), IWORK( * )
  216:       DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
  217:      $                   VT( LDVT, * ), WORK( * )
  218: *     ..
  219: *
  220: *  =====================================================================
  221: *  Changed dimension statement in comment describing E from (N) to
  222: *  (N-1).  Sven, 17 Feb 05.
  223: *  =====================================================================
  224: *
  225: *     .. Parameters ..
  226:       DOUBLE PRECISION   ZERO, ONE, TWO
  227:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  228: *     ..
  229: *     .. Local Scalars ..
  230:       INTEGER            DIFL, DIFR, GIVCOL, GIVNUM, GIVPTR, I, IC,
  231:      $                   ICOMPQ, IERR, II, IS, IU, IUPLO, IVT, J, K, KK,
  232:      $                   MLVL, NM1, NSIZE, PERM, POLES, QSTART, SMLSIZ,
  233:      $                   SMLSZP, SQRE, START, WSTART, Z
  234:       DOUBLE PRECISION   CS, EPS, ORGNRM, P, R, SN
  235: *     ..
  236: *     .. External Functions ..
  237:       LOGICAL            LSAME
  238:       INTEGER            ILAENV
  239:       DOUBLE PRECISION   DLAMCH, DLANST
  240:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
  241: *     ..
  242: *     .. External Subroutines ..
  243:       EXTERNAL           DCOPY, DLARTG, DLASCL, DLASD0, DLASDA, DLASDQ,
  244:      $                   DLASET, DLASR, DSWAP, XERBLA
  245: *     ..
  246: *     .. Intrinsic Functions ..
  247:       INTRINSIC          ABS, DBLE, INT, LOG, SIGN
  248: *     ..
  249: *     .. Executable Statements ..
  250: *
  251: *     Test the input parameters.
  252: *
  253:       INFO = 0
  254: *
  255:       IUPLO = 0
  256:       IF( LSAME( UPLO, 'U' ) )
  257:      $   IUPLO = 1
  258:       IF( LSAME( UPLO, 'L' ) )
  259:      $   IUPLO = 2
  260:       IF( LSAME( COMPQ, 'N' ) ) THEN
  261:          ICOMPQ = 0
  262:       ELSE IF( LSAME( COMPQ, 'P' ) ) THEN
  263:          ICOMPQ = 1
  264:       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
  265:          ICOMPQ = 2
  266:       ELSE
  267:          ICOMPQ = -1
  268:       END IF
  269:       IF( IUPLO.EQ.0 ) THEN
  270:          INFO = -1
  271:       ELSE IF( ICOMPQ.LT.0 ) THEN
  272:          INFO = -2
  273:       ELSE IF( N.LT.0 ) THEN
  274:          INFO = -3
  275:       ELSE IF( ( LDU.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDU.LT.
  276:      $         N ) ) ) THEN
  277:          INFO = -7
  278:       ELSE IF( ( LDVT.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDVT.LT.
  279:      $         N ) ) ) THEN
  280:          INFO = -9
  281:       END IF
  282:       IF( INFO.NE.0 ) THEN
  283:          CALL XERBLA( 'DBDSDC', -INFO )
  284:          RETURN
  285:       END IF
  286: *
  287: *     Quick return if possible
  288: *
  289:       IF( N.EQ.0 )
  290:      $   RETURN
  291:       SMLSIZ = ILAENV( 9, 'DBDSDC', ' ', 0, 0, 0, 0 )
  292:       IF( N.EQ.1 ) THEN
  293:          IF( ICOMPQ.EQ.1 ) THEN
  294:             Q( 1 ) = SIGN( ONE, D( 1 ) )
  295:             Q( 1+SMLSIZ*N ) = ONE
  296:          ELSE IF( ICOMPQ.EQ.2 ) THEN
  297:             U( 1, 1 ) = SIGN( ONE, D( 1 ) )
  298:             VT( 1, 1 ) = ONE
  299:          END IF
  300:          D( 1 ) = ABS( D( 1 ) )
  301:          RETURN
  302:       END IF
  303:       NM1 = N - 1
  304: *
  305: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
  306: *     by applying Givens rotations on the left
  307: *
  308:       WSTART = 1
  309:       QSTART = 3
  310:       IF( ICOMPQ.EQ.1 ) THEN
  311:          CALL DCOPY( N, D, 1, Q( 1 ), 1 )
  312:          CALL DCOPY( N-1, E, 1, Q( N+1 ), 1 )
  313:       END IF
  314:       IF( IUPLO.EQ.2 ) THEN
  315:          QSTART = 5
  316:          IF( ICOMPQ .EQ. 2 ) WSTART = 2*N - 1
  317:          DO 10 I = 1, N - 1
  318:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  319:             D( I ) = R
  320:             E( I ) = SN*D( I+1 )
  321:             D( I+1 ) = CS*D( I+1 )
  322:             IF( ICOMPQ.EQ.1 ) THEN
  323:                Q( I+2*N ) = CS
  324:                Q( I+3*N ) = SN
  325:             ELSE IF( ICOMPQ.EQ.2 ) THEN
  326:                WORK( I ) = CS
  327:                WORK( NM1+I ) = -SN
  328:             END IF
  329:    10    CONTINUE
  330:       END IF
  331: *
  332: *     If ICOMPQ = 0, use DLASDQ to compute the singular values.
  333: *
  334:       IF( ICOMPQ.EQ.0 ) THEN
  335: *        Ignore WSTART, instead using WORK( 1 ), since the two vectors
  336: *        for CS and -SN above are added only if ICOMPQ == 2,
  337: *        and adding them exceeds documented WORK size of 4*n.
  338:          CALL DLASDQ( 'U', 0, N, 0, 0, 0, D, E, VT, LDVT, U, LDU, U,
  339:      $                LDU, WORK( 1 ), INFO )
  340:          GO TO 40
  341:       END IF
  342: *
  343: *     If N is smaller than the minimum divide size SMLSIZ, then solve
  344: *     the problem with another solver.
  345: *
  346:       IF( N.LE.SMLSIZ ) THEN
  347:          IF( ICOMPQ.EQ.2 ) THEN
  348:             CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
  349:             CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
  350:             CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, VT, LDVT, U, LDU, U,
  351:      $                   LDU, WORK( WSTART ), INFO )
  352:          ELSE IF( ICOMPQ.EQ.1 ) THEN
  353:             IU = 1
  354:             IVT = IU + N
  355:             CALL DLASET( 'A', N, N, ZERO, ONE, Q( IU+( QSTART-1 )*N ),
  356:      $                   N )
  357:             CALL DLASET( 'A', N, N, ZERO, ONE, Q( IVT+( QSTART-1 )*N ),
  358:      $                   N )
  359:             CALL DLASDQ( 'U', 0, N, N, N, 0, D, E,
  360:      $                   Q( IVT+( QSTART-1 )*N ), N,
  361:      $                   Q( IU+( QSTART-1 )*N ), N,
  362:      $                   Q( IU+( QSTART-1 )*N ), N, WORK( WSTART ),
  363:      $                   INFO )
  364:          END IF
  365:          GO TO 40
  366:       END IF
  367: *
  368:       IF( ICOMPQ.EQ.2 ) THEN
  369:          CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
  370:          CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
  371:       END IF
  372: *
  373: *     Scale.
  374: *
  375:       ORGNRM = DLANST( 'M', N, D, E )
  376:       IF( ORGNRM.EQ.ZERO )
  377:      $   RETURN
  378:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, IERR )
  379:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, IERR )
  380: *
  381:       EPS = (0.9D+0)*DLAMCH( 'Epsilon' )
  382: *
  383:       MLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
  384:       SMLSZP = SMLSIZ + 1
  385: *
  386:       IF( ICOMPQ.EQ.1 ) THEN
  387:          IU = 1
  388:          IVT = 1 + SMLSIZ
  389:          DIFL = IVT + SMLSZP
  390:          DIFR = DIFL + MLVL
  391:          Z = DIFR + MLVL*2
  392:          IC = Z + MLVL
  393:          IS = IC + 1
  394:          POLES = IS + 1
  395:          GIVNUM = POLES + 2*MLVL
  396: *
  397:          K = 1
  398:          GIVPTR = 2
  399:          PERM = 3
  400:          GIVCOL = PERM + MLVL
  401:       END IF
  402: *
  403:       DO 20 I = 1, N
  404:          IF( ABS( D( I ) ).LT.EPS ) THEN
  405:             D( I ) = SIGN( EPS, D( I ) )
  406:          END IF
  407:    20 CONTINUE
  408: *
  409:       START = 1
  410:       SQRE = 0
  411: *
  412:       DO 30 I = 1, NM1
  413:          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
  414: *
  415: *           Subproblem found. First determine its size and then
  416: *           apply divide and conquer on it.
  417: *
  418:             IF( I.LT.NM1 ) THEN
  419: *
  420: *              A subproblem with E(I) small for I < NM1.
  421: *
  422:                NSIZE = I - START + 1
  423:             ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
  424: *
  425: *              A subproblem with E(NM1) not too small but I = NM1.
  426: *
  427:                NSIZE = N - START + 1
  428:             ELSE
  429: *
  430: *              A subproblem with E(NM1) small. This implies an
  431: *              1-by-1 subproblem at D(N). Solve this 1-by-1 problem
  432: *              first.
  433: *
  434:                NSIZE = I - START + 1
  435:                IF( ICOMPQ.EQ.2 ) THEN
  436:                   U( N, N ) = SIGN( ONE, D( N ) )
  437:                   VT( N, N ) = ONE
  438:                ELSE IF( ICOMPQ.EQ.1 ) THEN
  439:                   Q( N+( QSTART-1 )*N ) = SIGN( ONE, D( N ) )
  440:                   Q( N+( SMLSIZ+QSTART-1 )*N ) = ONE
  441:                END IF
  442:                D( N ) = ABS( D( N ) )
  443:             END IF
  444:             IF( ICOMPQ.EQ.2 ) THEN
  445:                CALL DLASD0( NSIZE, SQRE, D( START ), E( START ),
  446:      $                      U( START, START ), LDU, VT( START, START ),
  447:      $                      LDVT, SMLSIZ, IWORK, WORK( WSTART ), INFO )
  448:             ELSE
  449:                CALL DLASDA( ICOMPQ, SMLSIZ, NSIZE, SQRE, D( START ),
  450:      $                      E( START ), Q( START+( IU+QSTART-2 )*N ), N,
  451:      $                      Q( START+( IVT+QSTART-2 )*N ),
  452:      $                      IQ( START+K*N ), Q( START+( DIFL+QSTART-2 )*
  453:      $                      N ), Q( START+( DIFR+QSTART-2 )*N ),
  454:      $                      Q( START+( Z+QSTART-2 )*N ),
  455:      $                      Q( START+( POLES+QSTART-2 )*N ),
  456:      $                      IQ( START+GIVPTR*N ), IQ( START+GIVCOL*N ),
  457:      $                      N, IQ( START+PERM*N ),
  458:      $                      Q( START+( GIVNUM+QSTART-2 )*N ),
  459:      $                      Q( START+( IC+QSTART-2 )*N ),
  460:      $                      Q( START+( IS+QSTART-2 )*N ),
  461:      $                      WORK( WSTART ), IWORK, INFO )
  462:             END IF
  463:             IF( INFO.NE.0 ) THEN
  464:                RETURN
  465:             END IF
  466:             START = I + 1
  467:          END IF
  468:    30 CONTINUE
  469: *
  470: *     Unscale
  471: *
  472:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, IERR )
  473:    40 CONTINUE
  474: *
  475: *     Use Selection Sort to minimize swaps of singular vectors
  476: *
  477:       DO 60 II = 2, N
  478:          I = II - 1
  479:          KK = I
  480:          P = D( I )
  481:          DO 50 J = II, N
  482:             IF( D( J ).GT.P ) THEN
  483:                KK = J
  484:                P = D( J )
  485:             END IF
  486:    50    CONTINUE
  487:          IF( KK.NE.I ) THEN
  488:             D( KK ) = D( I )
  489:             D( I ) = P
  490:             IF( ICOMPQ.EQ.1 ) THEN
  491:                IQ( I ) = KK
  492:             ELSE IF( ICOMPQ.EQ.2 ) THEN
  493:                CALL DSWAP( N, U( 1, I ), 1, U( 1, KK ), 1 )
  494:                CALL DSWAP( N, VT( I, 1 ), LDVT, VT( KK, 1 ), LDVT )
  495:             END IF
  496:          ELSE IF( ICOMPQ.EQ.1 ) THEN
  497:             IQ( I ) = I
  498:          END IF
  499:    60 CONTINUE
  500: *
  501: *     If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO
  502: *
  503:       IF( ICOMPQ.EQ.1 ) THEN
  504:          IF( IUPLO.EQ.1 ) THEN
  505:             IQ( N ) = 1
  506:          ELSE
  507:             IQ( N ) = 0
  508:          END IF
  509:       END IF
  510: *
  511: *     If B is lower bidiagonal, update U by those Givens rotations
  512: *     which rotated B to be upper bidiagonal
  513: *
  514:       IF( ( IUPLO.EQ.2 ) .AND. ( ICOMPQ.EQ.2 ) )
  515:      $   CALL DLASR( 'L', 'V', 'B', N, N, WORK( 1 ), WORK( N ), U, LDU )
  516: *
  517:       RETURN
  518: *
  519: *     End of DBDSDC
  520: *
  521:       END

CVSweb interface <joel.bertrand@systella.fr>