Annotation of rpl/lapack/lapack/dbdsdc.f, revision 1.14

1.10      bertrand    1: *> \brief \b DBDSDC
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DBDSDC + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsdc.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsdc.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsdc.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
                     22: *                          WORK, IWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          COMPQ, UPLO
                     26: *       INTEGER            INFO, LDU, LDVT, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IQ( * ), IWORK( * )
                     30: *       DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
                     31: *      $                   VT( LDVT, * ), WORK( * )
                     32: *       ..
                     33: *  
                     34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DBDSDC computes the singular value decomposition (SVD) of a real
                     41: *> N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT,
                     42: *> using a divide and conquer method, where S is a diagonal matrix
                     43: *> with non-negative diagonal elements (the singular values of B), and
                     44: *> U and VT are orthogonal matrices of left and right singular vectors,
                     45: *> respectively. DBDSDC can be used to compute all singular values,
                     46: *> and optionally, singular vectors or singular vectors in compact form.
                     47: *>
                     48: *> This code makes very mild assumptions about floating point
                     49: *> arithmetic. It will work on machines with a guard digit in
                     50: *> add/subtract, or on those binary machines without guard digits
                     51: *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
                     52: *> It could conceivably fail on hexadecimal or decimal machines
                     53: *> without guard digits, but we know of none.  See DLASD3 for details.
                     54: *>
                     55: *> The code currently calls DLASDQ if singular values only are desired.
                     56: *> However, it can be slightly modified to compute singular values
                     57: *> using the divide and conquer method.
                     58: *> \endverbatim
                     59: *
                     60: *  Arguments:
                     61: *  ==========
                     62: *
                     63: *> \param[in] UPLO
                     64: *> \verbatim
                     65: *>          UPLO is CHARACTER*1
                     66: *>          = 'U':  B is upper bidiagonal.
                     67: *>          = 'L':  B is lower bidiagonal.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] COMPQ
                     71: *> \verbatim
                     72: *>          COMPQ is CHARACTER*1
                     73: *>          Specifies whether singular vectors are to be computed
                     74: *>          as follows:
                     75: *>          = 'N':  Compute singular values only;
                     76: *>          = 'P':  Compute singular values and compute singular
                     77: *>                  vectors in compact form;
                     78: *>          = 'I':  Compute singular values and singular vectors.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] N
                     82: *> \verbatim
                     83: *>          N is INTEGER
                     84: *>          The order of the matrix B.  N >= 0.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in,out] D
                     88: *> \verbatim
                     89: *>          D is DOUBLE PRECISION array, dimension (N)
                     90: *>          On entry, the n diagonal elements of the bidiagonal matrix B.
                     91: *>          On exit, if INFO=0, the singular values of B.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in,out] E
                     95: *> \verbatim
                     96: *>          E is DOUBLE PRECISION array, dimension (N-1)
                     97: *>          On entry, the elements of E contain the offdiagonal
                     98: *>          elements of the bidiagonal matrix whose SVD is desired.
                     99: *>          On exit, E has been destroyed.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[out] U
                    103: *> \verbatim
                    104: *>          U is DOUBLE PRECISION array, dimension (LDU,N)
                    105: *>          If  COMPQ = 'I', then:
                    106: *>             On exit, if INFO = 0, U contains the left singular vectors
                    107: *>             of the bidiagonal matrix.
                    108: *>          For other values of COMPQ, U is not referenced.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in] LDU
                    112: *> \verbatim
                    113: *>          LDU is INTEGER
                    114: *>          The leading dimension of the array U.  LDU >= 1.
                    115: *>          If singular vectors are desired, then LDU >= max( 1, N ).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[out] VT
                    119: *> \verbatim
                    120: *>          VT is DOUBLE PRECISION array, dimension (LDVT,N)
                    121: *>          If  COMPQ = 'I', then:
                    122: *>             On exit, if INFO = 0, VT**T contains the right singular
                    123: *>             vectors of the bidiagonal matrix.
                    124: *>          For other values of COMPQ, VT is not referenced.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] LDVT
                    128: *> \verbatim
                    129: *>          LDVT is INTEGER
                    130: *>          The leading dimension of the array VT.  LDVT >= 1.
                    131: *>          If singular vectors are desired, then LDVT >= max( 1, N ).
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[out] Q
                    135: *> \verbatim
                    136: *>          Q is DOUBLE PRECISION array, dimension (LDQ)
                    137: *>          If  COMPQ = 'P', then:
                    138: *>             On exit, if INFO = 0, Q and IQ contain the left
                    139: *>             and right singular vectors in a compact form,
                    140: *>             requiring O(N log N) space instead of 2*N**2.
                    141: *>             In particular, Q contains all the DOUBLE PRECISION data in
                    142: *>             LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
                    143: *>             words of memory, where SMLSIZ is returned by ILAENV and
                    144: *>             is equal to the maximum size of the subproblems at the
                    145: *>             bottom of the computation tree (usually about 25).
                    146: *>          For other values of COMPQ, Q is not referenced.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[out] IQ
                    150: *> \verbatim
                    151: *>          IQ is INTEGER array, dimension (LDIQ)
                    152: *>          If  COMPQ = 'P', then:
                    153: *>             On exit, if INFO = 0, Q and IQ contain the left
                    154: *>             and right singular vectors in a compact form,
                    155: *>             requiring O(N log N) space instead of 2*N**2.
                    156: *>             In particular, IQ contains all INTEGER data in
                    157: *>             LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
                    158: *>             words of memory, where SMLSIZ is returned by ILAENV and
                    159: *>             is equal to the maximum size of the subproblems at the
                    160: *>             bottom of the computation tree (usually about 25).
                    161: *>          For other values of COMPQ, IQ is not referenced.
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] WORK
                    165: *> \verbatim
                    166: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    167: *>          If COMPQ = 'N' then LWORK >= (4 * N).
                    168: *>          If COMPQ = 'P' then LWORK >= (6 * N).
                    169: *>          If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] IWORK
                    173: *> \verbatim
                    174: *>          IWORK is INTEGER array, dimension (8*N)
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] INFO
                    178: *> \verbatim
                    179: *>          INFO is INTEGER
                    180: *>          = 0:  successful exit.
                    181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    182: *>          > 0:  The algorithm failed to compute a singular value.
                    183: *>                The update process of divide and conquer failed.
                    184: *> \endverbatim
                    185: *
                    186: *  Authors:
                    187: *  ========
                    188: *
                    189: *> \author Univ. of Tennessee 
                    190: *> \author Univ. of California Berkeley 
                    191: *> \author Univ. of Colorado Denver 
                    192: *> \author NAG Ltd. 
                    193: *
                    194: *> \date November 2011
                    195: *
                    196: *> \ingroup auxOTHERcomputational
                    197: *
                    198: *> \par Contributors:
                    199: *  ==================
                    200: *>
                    201: *>     Ming Gu and Huan Ren, Computer Science Division, University of
                    202: *>     California at Berkeley, USA
                    203: *>
                    204: *  =====================================================================
1.1       bertrand  205:       SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
                    206:      $                   WORK, IWORK, INFO )
                    207: *
1.10      bertrand  208: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  209: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    210: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10      bertrand  211: *     November 2011
1.1       bertrand  212: *
                    213: *     .. Scalar Arguments ..
                    214:       CHARACTER          COMPQ, UPLO
                    215:       INTEGER            INFO, LDU, LDVT, N
                    216: *     ..
                    217: *     .. Array Arguments ..
                    218:       INTEGER            IQ( * ), IWORK( * )
                    219:       DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
                    220:      $                   VT( LDVT, * ), WORK( * )
                    221: *     ..
                    222: *
                    223: *  =====================================================================
                    224: *  Changed dimension statement in comment describing E from (N) to
                    225: *  (N-1).  Sven, 17 Feb 05.
                    226: *  =====================================================================
                    227: *
                    228: *     .. Parameters ..
                    229:       DOUBLE PRECISION   ZERO, ONE, TWO
                    230:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                    231: *     ..
                    232: *     .. Local Scalars ..
                    233:       INTEGER            DIFL, DIFR, GIVCOL, GIVNUM, GIVPTR, I, IC,
                    234:      $                   ICOMPQ, IERR, II, IS, IU, IUPLO, IVT, J, K, KK,
                    235:      $                   MLVL, NM1, NSIZE, PERM, POLES, QSTART, SMLSIZ,
                    236:      $                   SMLSZP, SQRE, START, WSTART, Z
                    237:       DOUBLE PRECISION   CS, EPS, ORGNRM, P, R, SN
                    238: *     ..
                    239: *     .. External Functions ..
                    240:       LOGICAL            LSAME
                    241:       INTEGER            ILAENV
                    242:       DOUBLE PRECISION   DLAMCH, DLANST
                    243:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
                    244: *     ..
                    245: *     .. External Subroutines ..
                    246:       EXTERNAL           DCOPY, DLARTG, DLASCL, DLASD0, DLASDA, DLASDQ,
                    247:      $                   DLASET, DLASR, DSWAP, XERBLA
                    248: *     ..
                    249: *     .. Intrinsic Functions ..
                    250:       INTRINSIC          ABS, DBLE, INT, LOG, SIGN
                    251: *     ..
                    252: *     .. Executable Statements ..
                    253: *
                    254: *     Test the input parameters.
                    255: *
                    256:       INFO = 0
                    257: *
                    258:       IUPLO = 0
                    259:       IF( LSAME( UPLO, 'U' ) )
                    260:      $   IUPLO = 1
                    261:       IF( LSAME( UPLO, 'L' ) )
                    262:      $   IUPLO = 2
                    263:       IF( LSAME( COMPQ, 'N' ) ) THEN
                    264:          ICOMPQ = 0
                    265:       ELSE IF( LSAME( COMPQ, 'P' ) ) THEN
                    266:          ICOMPQ = 1
                    267:       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
                    268:          ICOMPQ = 2
                    269:       ELSE
                    270:          ICOMPQ = -1
                    271:       END IF
                    272:       IF( IUPLO.EQ.0 ) THEN
                    273:          INFO = -1
                    274:       ELSE IF( ICOMPQ.LT.0 ) THEN
                    275:          INFO = -2
                    276:       ELSE IF( N.LT.0 ) THEN
                    277:          INFO = -3
                    278:       ELSE IF( ( LDU.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDU.LT.
                    279:      $         N ) ) ) THEN
                    280:          INFO = -7
                    281:       ELSE IF( ( LDVT.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDVT.LT.
                    282:      $         N ) ) ) THEN
                    283:          INFO = -9
                    284:       END IF
                    285:       IF( INFO.NE.0 ) THEN
                    286:          CALL XERBLA( 'DBDSDC', -INFO )
                    287:          RETURN
                    288:       END IF
                    289: *
                    290: *     Quick return if possible
                    291: *
                    292:       IF( N.EQ.0 )
                    293:      $   RETURN
                    294:       SMLSIZ = ILAENV( 9, 'DBDSDC', ' ', 0, 0, 0, 0 )
                    295:       IF( N.EQ.1 ) THEN
                    296:          IF( ICOMPQ.EQ.1 ) THEN
                    297:             Q( 1 ) = SIGN( ONE, D( 1 ) )
                    298:             Q( 1+SMLSIZ*N ) = ONE
                    299:          ELSE IF( ICOMPQ.EQ.2 ) THEN
                    300:             U( 1, 1 ) = SIGN( ONE, D( 1 ) )
                    301:             VT( 1, 1 ) = ONE
                    302:          END IF
                    303:          D( 1 ) = ABS( D( 1 ) )
                    304:          RETURN
                    305:       END IF
                    306:       NM1 = N - 1
                    307: *
                    308: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
                    309: *     by applying Givens rotations on the left
                    310: *
                    311:       WSTART = 1
                    312:       QSTART = 3
                    313:       IF( ICOMPQ.EQ.1 ) THEN
                    314:          CALL DCOPY( N, D, 1, Q( 1 ), 1 )
                    315:          CALL DCOPY( N-1, E, 1, Q( N+1 ), 1 )
                    316:       END IF
                    317:       IF( IUPLO.EQ.2 ) THEN
                    318:          QSTART = 5
                    319:          WSTART = 2*N - 1
                    320:          DO 10 I = 1, N - 1
                    321:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
                    322:             D( I ) = R
                    323:             E( I ) = SN*D( I+1 )
                    324:             D( I+1 ) = CS*D( I+1 )
                    325:             IF( ICOMPQ.EQ.1 ) THEN
                    326:                Q( I+2*N ) = CS
                    327:                Q( I+3*N ) = SN
                    328:             ELSE IF( ICOMPQ.EQ.2 ) THEN
                    329:                WORK( I ) = CS
                    330:                WORK( NM1+I ) = -SN
                    331:             END IF
                    332:    10    CONTINUE
                    333:       END IF
                    334: *
                    335: *     If ICOMPQ = 0, use DLASDQ to compute the singular values.
                    336: *
                    337:       IF( ICOMPQ.EQ.0 ) THEN
                    338:          CALL DLASDQ( 'U', 0, N, 0, 0, 0, D, E, VT, LDVT, U, LDU, U,
                    339:      $                LDU, WORK( WSTART ), INFO )
                    340:          GO TO 40
                    341:       END IF
                    342: *
                    343: *     If N is smaller than the minimum divide size SMLSIZ, then solve
                    344: *     the problem with another solver.
                    345: *
                    346:       IF( N.LE.SMLSIZ ) THEN
                    347:          IF( ICOMPQ.EQ.2 ) THEN
                    348:             CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
                    349:             CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
                    350:             CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, VT, LDVT, U, LDU, U,
                    351:      $                   LDU, WORK( WSTART ), INFO )
                    352:          ELSE IF( ICOMPQ.EQ.1 ) THEN
                    353:             IU = 1
                    354:             IVT = IU + N
                    355:             CALL DLASET( 'A', N, N, ZERO, ONE, Q( IU+( QSTART-1 )*N ),
                    356:      $                   N )
                    357:             CALL DLASET( 'A', N, N, ZERO, ONE, Q( IVT+( QSTART-1 )*N ),
                    358:      $                   N )
                    359:             CALL DLASDQ( 'U', 0, N, N, N, 0, D, E,
                    360:      $                   Q( IVT+( QSTART-1 )*N ), N,
                    361:      $                   Q( IU+( QSTART-1 )*N ), N,
                    362:      $                   Q( IU+( QSTART-1 )*N ), N, WORK( WSTART ),
                    363:      $                   INFO )
                    364:          END IF
                    365:          GO TO 40
                    366:       END IF
                    367: *
                    368:       IF( ICOMPQ.EQ.2 ) THEN
                    369:          CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
                    370:          CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
                    371:       END IF
                    372: *
                    373: *     Scale.
                    374: *
                    375:       ORGNRM = DLANST( 'M', N, D, E )
                    376:       IF( ORGNRM.EQ.ZERO )
                    377:      $   RETURN
                    378:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, IERR )
                    379:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, IERR )
                    380: *
1.9       bertrand  381:       EPS = (0.9D+0)*DLAMCH( 'Epsilon' )
1.1       bertrand  382: *
                    383:       MLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
                    384:       SMLSZP = SMLSIZ + 1
                    385: *
                    386:       IF( ICOMPQ.EQ.1 ) THEN
                    387:          IU = 1
                    388:          IVT = 1 + SMLSIZ
                    389:          DIFL = IVT + SMLSZP
                    390:          DIFR = DIFL + MLVL
                    391:          Z = DIFR + MLVL*2
                    392:          IC = Z + MLVL
                    393:          IS = IC + 1
                    394:          POLES = IS + 1
                    395:          GIVNUM = POLES + 2*MLVL
                    396: *
                    397:          K = 1
                    398:          GIVPTR = 2
                    399:          PERM = 3
                    400:          GIVCOL = PERM + MLVL
                    401:       END IF
                    402: *
                    403:       DO 20 I = 1, N
                    404:          IF( ABS( D( I ) ).LT.EPS ) THEN
                    405:             D( I ) = SIGN( EPS, D( I ) )
                    406:          END IF
                    407:    20 CONTINUE
                    408: *
                    409:       START = 1
                    410:       SQRE = 0
                    411: *
                    412:       DO 30 I = 1, NM1
                    413:          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
                    414: *
                    415: *        Subproblem found. First determine its size and then
                    416: *        apply divide and conquer on it.
                    417: *
                    418:             IF( I.LT.NM1 ) THEN
                    419: *
                    420: *        A subproblem with E(I) small for I < NM1.
                    421: *
                    422:                NSIZE = I - START + 1
                    423:             ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
                    424: *
                    425: *        A subproblem with E(NM1) not too small but I = NM1.
                    426: *
                    427:                NSIZE = N - START + 1
                    428:             ELSE
                    429: *
                    430: *        A subproblem with E(NM1) small. This implies an
                    431: *        1-by-1 subproblem at D(N). Solve this 1-by-1 problem
                    432: *        first.
                    433: *
                    434:                NSIZE = I - START + 1
                    435:                IF( ICOMPQ.EQ.2 ) THEN
                    436:                   U( N, N ) = SIGN( ONE, D( N ) )
                    437:                   VT( N, N ) = ONE
                    438:                ELSE IF( ICOMPQ.EQ.1 ) THEN
                    439:                   Q( N+( QSTART-1 )*N ) = SIGN( ONE, D( N ) )
                    440:                   Q( N+( SMLSIZ+QSTART-1 )*N ) = ONE
                    441:                END IF
                    442:                D( N ) = ABS( D( N ) )
                    443:             END IF
                    444:             IF( ICOMPQ.EQ.2 ) THEN
                    445:                CALL DLASD0( NSIZE, SQRE, D( START ), E( START ),
                    446:      $                      U( START, START ), LDU, VT( START, START ),
                    447:      $                      LDVT, SMLSIZ, IWORK, WORK( WSTART ), INFO )
                    448:             ELSE
                    449:                CALL DLASDA( ICOMPQ, SMLSIZ, NSIZE, SQRE, D( START ),
                    450:      $                      E( START ), Q( START+( IU+QSTART-2 )*N ), N,
                    451:      $                      Q( START+( IVT+QSTART-2 )*N ),
                    452:      $                      IQ( START+K*N ), Q( START+( DIFL+QSTART-2 )*
                    453:      $                      N ), Q( START+( DIFR+QSTART-2 )*N ),
                    454:      $                      Q( START+( Z+QSTART-2 )*N ),
                    455:      $                      Q( START+( POLES+QSTART-2 )*N ),
                    456:      $                      IQ( START+GIVPTR*N ), IQ( START+GIVCOL*N ),
                    457:      $                      N, IQ( START+PERM*N ),
                    458:      $                      Q( START+( GIVNUM+QSTART-2 )*N ),
                    459:      $                      Q( START+( IC+QSTART-2 )*N ),
                    460:      $                      Q( START+( IS+QSTART-2 )*N ),
                    461:      $                      WORK( WSTART ), IWORK, INFO )
1.5       bertrand  462:             END IF
                    463:             IF( INFO.NE.0 ) THEN
                    464:                RETURN
1.1       bertrand  465:             END IF
                    466:             START = I + 1
                    467:          END IF
                    468:    30 CONTINUE
                    469: *
                    470: *     Unscale
                    471: *
                    472:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, IERR )
                    473:    40 CONTINUE
                    474: *
                    475: *     Use Selection Sort to minimize swaps of singular vectors
                    476: *
                    477:       DO 60 II = 2, N
                    478:          I = II - 1
                    479:          KK = I
                    480:          P = D( I )
                    481:          DO 50 J = II, N
                    482:             IF( D( J ).GT.P ) THEN
                    483:                KK = J
                    484:                P = D( J )
                    485:             END IF
                    486:    50    CONTINUE
                    487:          IF( KK.NE.I ) THEN
                    488:             D( KK ) = D( I )
                    489:             D( I ) = P
                    490:             IF( ICOMPQ.EQ.1 ) THEN
                    491:                IQ( I ) = KK
                    492:             ELSE IF( ICOMPQ.EQ.2 ) THEN
                    493:                CALL DSWAP( N, U( 1, I ), 1, U( 1, KK ), 1 )
                    494:                CALL DSWAP( N, VT( I, 1 ), LDVT, VT( KK, 1 ), LDVT )
                    495:             END IF
                    496:          ELSE IF( ICOMPQ.EQ.1 ) THEN
                    497:             IQ( I ) = I
                    498:          END IF
                    499:    60 CONTINUE
                    500: *
                    501: *     If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO
                    502: *
                    503:       IF( ICOMPQ.EQ.1 ) THEN
                    504:          IF( IUPLO.EQ.1 ) THEN
                    505:             IQ( N ) = 1
                    506:          ELSE
                    507:             IQ( N ) = 0
                    508:          END IF
                    509:       END IF
                    510: *
                    511: *     If B is lower bidiagonal, update U by those Givens rotations
                    512: *     which rotated B to be upper bidiagonal
                    513: *
                    514:       IF( ( IUPLO.EQ.2 ) .AND. ( ICOMPQ.EQ.2 ) )
                    515:      $   CALL DLASR( 'L', 'V', 'B', N, N, WORK( 1 ), WORK( N ), U, LDU )
                    516: *
                    517:       RETURN
                    518: *
                    519: *     End of DBDSDC
                    520: *
                    521:       END

CVSweb interface <joel.bertrand@systella.fr>