File:  [local] / rpl / lapack / lapack / dbbcsd.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:15 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b DBBCSD
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DBBCSD + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbbcsd.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbbcsd.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbbcsd.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
   22: *                          THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
   23: *                          V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
   24: *                          B22D, B22E, WORK, LWORK, INFO )
   25:    26: *       .. Scalar Arguments ..
   27: *       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
   28: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   B11D( * ), B11E( * ), B12D( * ), B12E( * ),
   32: *      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
   33: *      $                   PHI( * ), THETA( * ), WORK( * )
   34: *       DOUBLE PRECISION   U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
   35: *      $                   V2T( LDV2T, * )
   36: *       ..
   37: *  
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> DBBCSD computes the CS decomposition of an orthogonal matrix in
   45: *> bidiagonal-block form,
   46: *>
   47: *>
   48: *>     [ B11 | B12 0  0 ]
   49: *>     [  0  |  0 -I  0 ]
   50: *> X = [----------------]
   51: *>     [ B21 | B22 0  0 ]
   52: *>     [  0  |  0  0  I ]
   53: *>
   54: *>                               [  C | -S  0  0 ]
   55: *>                   [ U1 |    ] [  0 |  0 -I  0 ] [ V1 |    ]**T
   56: *>                 = [---------] [---------------] [---------]   .
   57: *>                   [    | U2 ] [  S |  C  0  0 ] [    | V2 ]
   58: *>                               [  0 |  0  0  I ]
   59: *>
   60: *> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
   61: *> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
   62: *> transposed and/or permuted. This can be done in constant time using
   63: *> the TRANS and SIGNS options. See DORCSD for details.)
   64: *>
   65: *> The bidiagonal matrices B11, B12, B21, and B22 are represented
   66: *> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
   67: *>
   68: *> The orthogonal matrices U1, U2, V1T, and V2T are input/output.
   69: *> The input matrices are pre- or post-multiplied by the appropriate
   70: *> singular vector matrices.
   71: *> \endverbatim
   72: *
   73: *  Arguments:
   74: *  ==========
   75: *
   76: *> \param[in] JOBU1
   77: *> \verbatim
   78: *>          JOBU1 is CHARACTER
   79: *>          = 'Y':      U1 is updated;
   80: *>          otherwise:  U1 is not updated.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] JOBU2
   84: *> \verbatim
   85: *>          JOBU2 is CHARACTER
   86: *>          = 'Y':      U2 is updated;
   87: *>          otherwise:  U2 is not updated.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] JOBV1T
   91: *> \verbatim
   92: *>          JOBV1T is CHARACTER
   93: *>          = 'Y':      V1T is updated;
   94: *>          otherwise:  V1T is not updated.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] JOBV2T
   98: *> \verbatim
   99: *>          JOBV2T is CHARACTER
  100: *>          = 'Y':      V2T is updated;
  101: *>          otherwise:  V2T is not updated.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] TRANS
  105: *> \verbatim
  106: *>          TRANS is CHARACTER
  107: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
  108: *>                      order;
  109: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
  110: *>                      major order.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] M
  114: *> \verbatim
  115: *>          M is INTEGER
  116: *>          The number of rows and columns in X, the orthogonal matrix in
  117: *>          bidiagonal-block form.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] P
  121: *> \verbatim
  122: *>          P is INTEGER
  123: *>          The number of rows in the top-left block of X. 0 <= P <= M.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] Q
  127: *> \verbatim
  128: *>          Q is INTEGER
  129: *>          The number of columns in the top-left block of X.
  130: *>          0 <= Q <= MIN(P,M-P,M-Q).
  131: *> \endverbatim
  132: *>
  133: *> \param[in,out] THETA
  134: *> \verbatim
  135: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  136: *>          On entry, the angles THETA(1),...,THETA(Q) that, along with
  137: *>          PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
  138: *>          form. On exit, the angles whose cosines and sines define the
  139: *>          diagonal blocks in the CS decomposition.
  140: *> \endverbatim
  141: *>
  142: *> \param[in,out] PHI
  143: *> \verbatim
  144: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  145: *>          The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
  146: *>          THETA(Q), define the matrix in bidiagonal-block form.
  147: *> \endverbatim
  148: *>
  149: *> \param[in,out] U1
  150: *> \verbatim
  151: *>          U1 is DOUBLE PRECISION array, dimension (LDU1,P)
  152: *>          On entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied
  153: *>          by the left singular vector matrix common to [ B11 ; 0 ] and
  154: *>          [ B12 0 0 ; 0 -I 0 0 ].
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LDU1
  158: *> \verbatim
  159: *>          LDU1 is INTEGER
  160: *>          The leading dimension of the array U1.
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] U2
  164: *> \verbatim
  165: *>          U2 is DOUBLE PRECISION array, dimension (LDU2,M-P)
  166: *>          On entry, an LDU2-by-(M-P) matrix. On exit, U2 is
  167: *>          postmultiplied by the left singular vector matrix common to
  168: *>          [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDU2
  172: *> \verbatim
  173: *>          LDU2 is INTEGER
  174: *>          The leading dimension of the array U2.
  175: *> \endverbatim
  176: *>
  177: *> \param[in,out] V1T
  178: *> \verbatim
  179: *>          V1T is DOUBLE PRECISION array, dimension (LDV1T,Q)
  180: *>          On entry, a LDV1T-by-Q matrix. On exit, V1T is premultiplied
  181: *>          by the transpose of the right singular vector
  182: *>          matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
  183: *> \endverbatim
  184: *>
  185: *> \param[in] LDV1T
  186: *> \verbatim
  187: *>          LDV1T is INTEGER
  188: *>          The leading dimension of the array V1T.
  189: *> \endverbatim
  190: *>
  191: *> \param[in,out] V2T
  192: *> \verbatim
  193: *>          V2T is DOUBLE PRECISION array, dimenison (LDV2T,M-Q)
  194: *>          On entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is
  195: *>          premultiplied by the transpose of the right
  196: *>          singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
  197: *>          [ B22 0 0 ; 0 0 I ].
  198: *> \endverbatim
  199: *>
  200: *> \param[in] LDV2T
  201: *> \verbatim
  202: *>          LDV2T is INTEGER
  203: *>          The leading dimension of the array V2T.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] B11D
  207: *> \verbatim
  208: *>          B11D is DOUBLE PRECISION array, dimension (Q)
  209: *>          When DBBCSD converges, B11D contains the cosines of THETA(1),
  210: *>          ..., THETA(Q). If DBBCSD fails to converge, then B11D
  211: *>          contains the diagonal of the partially reduced top-left
  212: *>          block.
  213: *> \endverbatim
  214: *>
  215: *> \param[out] B11E
  216: *> \verbatim
  217: *>          B11E is DOUBLE PRECISION array, dimension (Q-1)
  218: *>          When DBBCSD converges, B11E contains zeros. If DBBCSD fails
  219: *>          to converge, then B11E contains the superdiagonal of the
  220: *>          partially reduced top-left block.
  221: *> \endverbatim
  222: *>
  223: *> \param[out] B12D
  224: *> \verbatim
  225: *>          B12D is DOUBLE PRECISION array, dimension (Q)
  226: *>          When DBBCSD converges, B12D contains the negative sines of
  227: *>          THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then
  228: *>          B12D contains the diagonal of the partially reduced top-right
  229: *>          block.
  230: *> \endverbatim
  231: *>
  232: *> \param[out] B12E
  233: *> \verbatim
  234: *>          B12E is DOUBLE PRECISION array, dimension (Q-1)
  235: *>          When DBBCSD converges, B12E contains zeros. If DBBCSD fails
  236: *>          to converge, then B12E contains the subdiagonal of the
  237: *>          partially reduced top-right block.
  238: *> \endverbatim
  239: *>
  240: *> \param[out] B21D
  241: *> \verbatim
  242: *>          B21D is DOUBLE PRECISION  array, dimension (Q)
  243: *>          When CBBCSD converges, B21D contains the negative sines of
  244: *>          THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
  245: *>          B21D contains the diagonal of the partially reduced bottom-left
  246: *>          block.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] B21E
  250: *> \verbatim
  251: *>          B21E is DOUBLE PRECISION  array, dimension (Q-1)
  252: *>          When CBBCSD converges, B21E contains zeros. If CBBCSD fails
  253: *>          to converge, then B21E contains the subdiagonal of the
  254: *>          partially reduced bottom-left block.
  255: *> \endverbatim
  256: *>
  257: *> \param[out] B22D
  258: *> \verbatim
  259: *>          B22D is DOUBLE PRECISION  array, dimension (Q)
  260: *>          When CBBCSD converges, B22D contains the negative sines of
  261: *>          THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
  262: *>          B22D contains the diagonal of the partially reduced bottom-right
  263: *>          block.
  264: *> \endverbatim
  265: *>
  266: *> \param[out] B22E
  267: *> \verbatim
  268: *>          B22E is DOUBLE PRECISION  array, dimension (Q-1)
  269: *>          When CBBCSD converges, B22E contains zeros. If CBBCSD fails
  270: *>          to converge, then B22E contains the subdiagonal of the
  271: *>          partially reduced bottom-right block.
  272: *> \endverbatim
  273: *>
  274: *> \param[out] WORK
  275: *> \verbatim
  276: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  277: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  278: *> \endverbatim
  279: *>
  280: *> \param[in] LWORK
  281: *> \verbatim
  282: *>          LWORK is INTEGER
  283: *>          The dimension of the array WORK. LWORK >= MAX(1,8*Q).
  284: *>
  285: *>          If LWORK = -1, then a workspace query is assumed; the
  286: *>          routine only calculates the optimal size of the WORK array,
  287: *>          returns this value as the first entry of the work array, and
  288: *>          no error message related to LWORK is issued by XERBLA.
  289: *> \endverbatim
  290: *>
  291: *> \param[out] INFO
  292: *> \verbatim
  293: *>          INFO is INTEGER
  294: *>          = 0:  successful exit.
  295: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  296: *>          > 0:  if DBBCSD did not converge, INFO specifies the number
  297: *>                of nonzero entries in PHI, and B11D, B11E, etc.,
  298: *>                contain the partially reduced matrix.
  299: *> \endverbatim
  300: *
  301: *> \par Internal Parameters:
  302: *  =========================
  303: *>
  304: *> \verbatim
  305: *>  TOLMUL  DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
  306: *>          TOLMUL controls the convergence criterion of the QR loop.
  307: *>          Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
  308: *>          are within TOLMUL*EPS of either bound.
  309: *> \endverbatim
  310: *
  311: *> \par References:
  312: *  ================
  313: *>
  314: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  315: *>      Algorithms, 50(1):33-65, 2009.
  316: *
  317: *  Authors:
  318: *  ========
  319: *
  320: *> \author Univ. of Tennessee 
  321: *> \author Univ. of California Berkeley 
  322: *> \author Univ. of Colorado Denver 
  323: *> \author NAG Ltd. 
  324: *
  325: *> \date November 2013
  326: *
  327: *> \ingroup doubleOTHERcomputational
  328: *
  329: *  =====================================================================
  330:       SUBROUTINE DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
  331:      $                   THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
  332:      $                   V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
  333:      $                   B22D, B22E, WORK, LWORK, INFO )
  334: *
  335: *  -- LAPACK computational routine (version 3.5.0) --
  336: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  337: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  338: *     November 2013
  339: *
  340: *     .. Scalar Arguments ..
  341:       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
  342:       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
  343: *     ..
  344: *     .. Array Arguments ..
  345:       DOUBLE PRECISION   B11D( * ), B11E( * ), B12D( * ), B12E( * ),
  346:      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
  347:      $                   PHI( * ), THETA( * ), WORK( * )
  348:       DOUBLE PRECISION   U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
  349:      $                   V2T( LDV2T, * )
  350: *     ..
  351: *
  352: *  ===================================================================
  353: *
  354: *     .. Parameters ..
  355:       INTEGER            MAXITR
  356:       PARAMETER          ( MAXITR = 6 )
  357:       DOUBLE PRECISION   HUNDRED, MEIGHTH, ONE, PIOVER2, TEN, ZERO
  358:       PARAMETER          ( HUNDRED = 100.0D0, MEIGHTH = -0.125D0,
  359:      $                     ONE = 1.0D0, PIOVER2 = 1.57079632679489662D0,
  360:      $                     TEN = 10.0D0, ZERO = 0.0D0 )
  361:       DOUBLE PRECISION   NEGONE
  362:       PARAMETER          ( NEGONE = -1.0D0 )
  363: *     ..
  364: *     .. Local Scalars ..
  365:       LOGICAL            COLMAJOR, LQUERY, RESTART11, RESTART12,
  366:      $                   RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
  367:      $                   WANTV2T
  368:       INTEGER            I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
  369:      $                   IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
  370:      $                   LWORKMIN, LWORKOPT, MAXIT, MINI
  371:       DOUBLE PRECISION   B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
  372:      $                   EPS, MU, NU, R, SIGMA11, SIGMA21,
  373:      $                   TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
  374:      $                   UNFL, X1, X2, Y1, Y2
  375: *
  376: *     .. External Subroutines ..
  377:       EXTERNAL           DLASR, DSCAL, DSWAP, DLARTGP, DLARTGS, DLAS2,
  378:      $                   XERBLA
  379: *     ..
  380: *     .. External Functions ..
  381:       DOUBLE PRECISION   DLAMCH
  382:       LOGICAL            LSAME
  383:       EXTERNAL           LSAME, DLAMCH
  384: *     ..
  385: *     .. Intrinsic Functions ..
  386:       INTRINSIC          ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
  387: *     ..
  388: *     .. Executable Statements ..
  389: *
  390: *     Test input arguments
  391: *
  392:       INFO = 0
  393:       LQUERY = LWORK .EQ. -1
  394:       WANTU1 = LSAME( JOBU1, 'Y' )
  395:       WANTU2 = LSAME( JOBU2, 'Y' )
  396:       WANTV1T = LSAME( JOBV1T, 'Y' )
  397:       WANTV2T = LSAME( JOBV2T, 'Y' )
  398:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  399: *
  400:       IF( M .LT. 0 ) THEN
  401:          INFO = -6
  402:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  403:          INFO = -7
  404:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  405:          INFO = -8
  406:       ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
  407:          INFO = -8
  408:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  409:          INFO = -12
  410:       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
  411:          INFO = -14
  412:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  413:          INFO = -16
  414:       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
  415:          INFO = -18
  416:       END IF
  417: *
  418: *     Quick return if Q = 0
  419: *
  420:       IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
  421:          LWORKMIN = 1
  422:          WORK(1) = LWORKMIN
  423:          RETURN
  424:       END IF
  425: *
  426: *     Compute workspace
  427: *
  428:       IF( INFO .EQ. 0 ) THEN
  429:          IU1CS = 1
  430:          IU1SN = IU1CS + Q
  431:          IU2CS = IU1SN + Q
  432:          IU2SN = IU2CS + Q
  433:          IV1TCS = IU2SN + Q
  434:          IV1TSN = IV1TCS + Q
  435:          IV2TCS = IV1TSN + Q
  436:          IV2TSN = IV2TCS + Q
  437:          LWORKOPT = IV2TSN + Q - 1
  438:          LWORKMIN = LWORKOPT
  439:          WORK(1) = LWORKOPT
  440:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  441:             INFO = -28
  442:          END IF
  443:       END IF
  444: *
  445:       IF( INFO .NE. 0 ) THEN
  446:          CALL XERBLA( 'DBBCSD', -INFO )
  447:          RETURN
  448:       ELSE IF( LQUERY ) THEN
  449:          RETURN
  450:       END IF
  451: *
  452: *     Get machine constants
  453: *
  454:       EPS = DLAMCH( 'Epsilon' )
  455:       UNFL = DLAMCH( 'Safe minimum' )
  456:       TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
  457:       TOL = TOLMUL*EPS
  458:       THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
  459: *
  460: *     Test for negligible sines or cosines
  461: *
  462:       DO I = 1, Q
  463:          IF( THETA(I) .LT. THRESH ) THEN
  464:             THETA(I) = ZERO
  465:          ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
  466:             THETA(I) = PIOVER2
  467:          END IF
  468:       END DO
  469:       DO I = 1, Q-1
  470:          IF( PHI(I) .LT. THRESH ) THEN
  471:             PHI(I) = ZERO
  472:          ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
  473:             PHI(I) = PIOVER2
  474:          END IF
  475:       END DO
  476: *
  477: *     Initial deflation
  478: *
  479:       IMAX = Q
  480:       DO WHILE( IMAX .GT. 1 )
  481:          IF( PHI(IMAX-1) .NE. ZERO ) THEN
  482:             EXIT
  483:          END IF
  484:          IMAX = IMAX - 1
  485:       END DO
  486:       IMIN = IMAX - 1
  487:       IF  ( IMIN .GT. 1 ) THEN
  488:          DO WHILE( PHI(IMIN-1) .NE. ZERO )
  489:             IMIN = IMIN - 1
  490:             IF  ( IMIN .LE. 1 ) EXIT
  491:          END DO
  492:       END IF
  493: *
  494: *     Initialize iteration counter
  495: *
  496:       MAXIT = MAXITR*Q*Q
  497:       ITER = 0
  498: *
  499: *     Begin main iteration loop
  500: *
  501:       DO WHILE( IMAX .GT. 1 )
  502: *
  503: *        Compute the matrix entries
  504: *
  505:          B11D(IMIN) = COS( THETA(IMIN) )
  506:          B21D(IMIN) = -SIN( THETA(IMIN) )
  507:          DO I = IMIN, IMAX - 1
  508:             B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
  509:             B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
  510:             B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
  511:             B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
  512:             B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
  513:             B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
  514:             B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
  515:             B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
  516:          END DO
  517:          B12D(IMAX) = SIN( THETA(IMAX) )
  518:          B22D(IMAX) = COS( THETA(IMAX) )
  519: *
  520: *        Abort if not converging; otherwise, increment ITER
  521: *
  522:          IF( ITER .GT. MAXIT ) THEN
  523:             INFO = 0
  524:             DO I = 1, Q
  525:                IF( PHI(I) .NE. ZERO )
  526:      $            INFO = INFO + 1
  527:             END DO
  528:             RETURN
  529:          END IF
  530: *
  531:          ITER = ITER + IMAX - IMIN
  532: *
  533: *        Compute shifts
  534: *
  535:          THETAMAX = THETA(IMIN)
  536:          THETAMIN = THETA(IMIN)
  537:          DO I = IMIN+1, IMAX
  538:             IF( THETA(I) > THETAMAX )
  539:      $         THETAMAX = THETA(I)
  540:             IF( THETA(I) < THETAMIN )
  541:      $         THETAMIN = THETA(I)
  542:          END DO
  543: *
  544:          IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
  545: *
  546: *           Zero on diagonals of B11 and B22; induce deflation with a
  547: *           zero shift
  548: *
  549:             MU = ZERO
  550:             NU = ONE
  551: *
  552:          ELSE IF( THETAMIN .LT. THRESH ) THEN
  553: *
  554: *           Zero on diagonals of B12 and B22; induce deflation with a
  555: *           zero shift
  556: *
  557:             MU = ONE
  558:             NU = ZERO
  559: *
  560:          ELSE
  561: *
  562: *           Compute shifts for B11 and B21 and use the lesser
  563: *
  564:             CALL DLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
  565:      $                  DUMMY )
  566:             CALL DLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
  567:      $                  DUMMY )
  568: *
  569:             IF( SIGMA11 .LE. SIGMA21 ) THEN
  570:                MU = SIGMA11
  571:                NU = SQRT( ONE - MU**2 )
  572:                IF( MU .LT. THRESH ) THEN
  573:                   MU = ZERO
  574:                   NU = ONE
  575:                END IF
  576:             ELSE
  577:                NU = SIGMA21
  578:                MU = SQRT( 1.0 - NU**2 )
  579:                IF( NU .LT. THRESH ) THEN
  580:                   MU = ONE
  581:                   NU = ZERO
  582:                END IF
  583:             END IF
  584:          END IF
  585: *
  586: *        Rotate to produce bulges in B11 and B21
  587: *
  588:          IF( MU .LE. NU ) THEN
  589:             CALL DLARTGS( B11D(IMIN), B11E(IMIN), MU,
  590:      $                    WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
  591:          ELSE
  592:             CALL DLARTGS( B21D(IMIN), B21E(IMIN), NU,
  593:      $                    WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
  594:          END IF
  595: *
  596:          TEMP = WORK(IV1TCS+IMIN-1)*B11D(IMIN) +
  597:      $          WORK(IV1TSN+IMIN-1)*B11E(IMIN)
  598:          B11E(IMIN) = WORK(IV1TCS+IMIN-1)*B11E(IMIN) -
  599:      $                WORK(IV1TSN+IMIN-1)*B11D(IMIN)
  600:          B11D(IMIN) = TEMP
  601:          B11BULGE = WORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
  602:          B11D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
  603:          TEMP = WORK(IV1TCS+IMIN-1)*B21D(IMIN) +
  604:      $          WORK(IV1TSN+IMIN-1)*B21E(IMIN)
  605:          B21E(IMIN) = WORK(IV1TCS+IMIN-1)*B21E(IMIN) -
  606:      $                WORK(IV1TSN+IMIN-1)*B21D(IMIN)
  607:          B21D(IMIN) = TEMP
  608:          B21BULGE = WORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
  609:          B21D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
  610: *
  611: *        Compute THETA(IMIN)
  612: *
  613:          THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
  614:      $                   SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
  615: *
  616: *        Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
  617: *
  618:          IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
  619:             CALL DLARTGP( B11BULGE, B11D(IMIN), WORK(IU1SN+IMIN-1),
  620:      $                    WORK(IU1CS+IMIN-1), R )
  621:          ELSE IF( MU .LE. NU ) THEN
  622:             CALL DLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
  623:      $                    WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
  624:          ELSE
  625:             CALL DLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
  626:      $                    WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
  627:          END IF
  628:          IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
  629:             CALL DLARTGP( B21BULGE, B21D(IMIN), WORK(IU2SN+IMIN-1),
  630:      $                    WORK(IU2CS+IMIN-1), R )
  631:          ELSE IF( NU .LT. MU ) THEN
  632:             CALL DLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
  633:      $                    WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
  634:          ELSE
  635:             CALL DLARTGS( B22D(IMIN), B22E(IMIN), MU,
  636:      $                    WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
  637:          END IF
  638:          WORK(IU2CS+IMIN-1) = -WORK(IU2CS+IMIN-1)
  639:          WORK(IU2SN+IMIN-1) = -WORK(IU2SN+IMIN-1)
  640: *
  641:          TEMP = WORK(IU1CS+IMIN-1)*B11E(IMIN) +
  642:      $          WORK(IU1SN+IMIN-1)*B11D(IMIN+1)
  643:          B11D(IMIN+1) = WORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
  644:      $                  WORK(IU1SN+IMIN-1)*B11E(IMIN)
  645:          B11E(IMIN) = TEMP
  646:          IF( IMAX .GT. IMIN+1 ) THEN
  647:             B11BULGE = WORK(IU1SN+IMIN-1)*B11E(IMIN+1)
  648:             B11E(IMIN+1) = WORK(IU1CS+IMIN-1)*B11E(IMIN+1)
  649:          END IF
  650:          TEMP = WORK(IU1CS+IMIN-1)*B12D(IMIN) +
  651:      $          WORK(IU1SN+IMIN-1)*B12E(IMIN)
  652:          B12E(IMIN) = WORK(IU1CS+IMIN-1)*B12E(IMIN) -
  653:      $                WORK(IU1SN+IMIN-1)*B12D(IMIN)
  654:          B12D(IMIN) = TEMP
  655:          B12BULGE = WORK(IU1SN+IMIN-1)*B12D(IMIN+1)
  656:          B12D(IMIN+1) = WORK(IU1CS+IMIN-1)*B12D(IMIN+1)
  657:          TEMP = WORK(IU2CS+IMIN-1)*B21E(IMIN) +
  658:      $          WORK(IU2SN+IMIN-1)*B21D(IMIN+1)
  659:          B21D(IMIN+1) = WORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
  660:      $                  WORK(IU2SN+IMIN-1)*B21E(IMIN)
  661:          B21E(IMIN) = TEMP
  662:          IF( IMAX .GT. IMIN+1 ) THEN
  663:             B21BULGE = WORK(IU2SN+IMIN-1)*B21E(IMIN+1)
  664:             B21E(IMIN+1) = WORK(IU2CS+IMIN-1)*B21E(IMIN+1)
  665:          END IF
  666:          TEMP = WORK(IU2CS+IMIN-1)*B22D(IMIN) +
  667:      $          WORK(IU2SN+IMIN-1)*B22E(IMIN)
  668:          B22E(IMIN) = WORK(IU2CS+IMIN-1)*B22E(IMIN) -
  669:      $                WORK(IU2SN+IMIN-1)*B22D(IMIN)
  670:          B22D(IMIN) = TEMP
  671:          B22BULGE = WORK(IU2SN+IMIN-1)*B22D(IMIN+1)
  672:          B22D(IMIN+1) = WORK(IU2CS+IMIN-1)*B22D(IMIN+1)
  673: *
  674: *        Inner loop: chase bulges from B11(IMIN,IMIN+2),
  675: *        B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
  676: *        bottom-right
  677: *
  678:          DO I = IMIN+1, IMAX-1
  679: *
  680: *           Compute PHI(I-1)
  681: *
  682:             X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
  683:             X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
  684:             Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
  685:             Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
  686: *
  687:             PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
  688: *
  689: *           Determine if there are bulges to chase or if a new direct
  690: *           summand has been reached
  691: *
  692:             RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
  693:             RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
  694:             RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  695:             RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  696: *
  697: *           If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
  698: *           B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
  699: *           chasing by applying the original shift again.
  700: *
  701:             IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
  702:                CALL DLARTGP( X2, X1, WORK(IV1TSN+I-1), WORK(IV1TCS+I-1),
  703:      $                       R )
  704:             ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
  705:                CALL DLARTGP( B11BULGE, B11E(I-1), WORK(IV1TSN+I-1),
  706:      $                       WORK(IV1TCS+I-1), R )
  707:             ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
  708:                CALL DLARTGP( B21BULGE, B21E(I-1), WORK(IV1TSN+I-1),
  709:      $                       WORK(IV1TCS+I-1), R )
  710:             ELSE IF( MU .LE. NU ) THEN
  711:                CALL DLARTGS( B11D(I), B11E(I), MU, WORK(IV1TCS+I-1),
  712:      $                       WORK(IV1TSN+I-1) )
  713:             ELSE
  714:                CALL DLARTGS( B21D(I), B21E(I), NU, WORK(IV1TCS+I-1),
  715:      $                       WORK(IV1TSN+I-1) )
  716:             END IF
  717:             WORK(IV1TCS+I-1) = -WORK(IV1TCS+I-1)
  718:             WORK(IV1TSN+I-1) = -WORK(IV1TSN+I-1)
  719:             IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  720:                CALL DLARTGP( Y2, Y1, WORK(IV2TSN+I-1-1),
  721:      $                       WORK(IV2TCS+I-1-1), R )
  722:             ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  723:                CALL DLARTGP( B12BULGE, B12D(I-1), WORK(IV2TSN+I-1-1),
  724:      $                       WORK(IV2TCS+I-1-1), R )
  725:             ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  726:                CALL DLARTGP( B22BULGE, B22D(I-1), WORK(IV2TSN+I-1-1),
  727:      $                       WORK(IV2TCS+I-1-1), R )
  728:             ELSE IF( NU .LT. MU ) THEN
  729:                CALL DLARTGS( B12E(I-1), B12D(I), NU, WORK(IV2TCS+I-1-1),
  730:      $                       WORK(IV2TSN+I-1-1) )
  731:             ELSE
  732:                CALL DLARTGS( B22E(I-1), B22D(I), MU, WORK(IV2TCS+I-1-1),
  733:      $                       WORK(IV2TSN+I-1-1) )
  734:             END IF
  735: *
  736:             TEMP = WORK(IV1TCS+I-1)*B11D(I) + WORK(IV1TSN+I-1)*B11E(I)
  737:             B11E(I) = WORK(IV1TCS+I-1)*B11E(I) -
  738:      $                WORK(IV1TSN+I-1)*B11D(I)
  739:             B11D(I) = TEMP
  740:             B11BULGE = WORK(IV1TSN+I-1)*B11D(I+1)
  741:             B11D(I+1) = WORK(IV1TCS+I-1)*B11D(I+1)
  742:             TEMP = WORK(IV1TCS+I-1)*B21D(I) + WORK(IV1TSN+I-1)*B21E(I)
  743:             B21E(I) = WORK(IV1TCS+I-1)*B21E(I) -
  744:      $                WORK(IV1TSN+I-1)*B21D(I)
  745:             B21D(I) = TEMP
  746:             B21BULGE = WORK(IV1TSN+I-1)*B21D(I+1)
  747:             B21D(I+1) = WORK(IV1TCS+I-1)*B21D(I+1)
  748:             TEMP = WORK(IV2TCS+I-1-1)*B12E(I-1) +
  749:      $             WORK(IV2TSN+I-1-1)*B12D(I)
  750:             B12D(I) = WORK(IV2TCS+I-1-1)*B12D(I) -
  751:      $                WORK(IV2TSN+I-1-1)*B12E(I-1)
  752:             B12E(I-1) = TEMP
  753:             B12BULGE = WORK(IV2TSN+I-1-1)*B12E(I)
  754:             B12E(I) = WORK(IV2TCS+I-1-1)*B12E(I)
  755:             TEMP = WORK(IV2TCS+I-1-1)*B22E(I-1) +
  756:      $             WORK(IV2TSN+I-1-1)*B22D(I)
  757:             B22D(I) = WORK(IV2TCS+I-1-1)*B22D(I) -
  758:      $                WORK(IV2TSN+I-1-1)*B22E(I-1)
  759:             B22E(I-1) = TEMP
  760:             B22BULGE = WORK(IV2TSN+I-1-1)*B22E(I)
  761:             B22E(I) = WORK(IV2TCS+I-1-1)*B22E(I)
  762: *
  763: *           Compute THETA(I)
  764: *
  765:             X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
  766:             X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
  767:             Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
  768:             Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
  769: *
  770:             THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
  771: *
  772: *           Determine if there are bulges to chase or if a new direct
  773: *           summand has been reached
  774: *
  775:             RESTART11 =   B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
  776:             RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  777:             RESTART21 =   B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
  778:             RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  779: *
  780: *           If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
  781: *           B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
  782: *           chasing by applying the original shift again.
  783: *
  784:             IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
  785:                CALL DLARTGP( X2, X1, WORK(IU1SN+I-1), WORK(IU1CS+I-1),
  786:      $                       R )
  787:             ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
  788:                CALL DLARTGP( B11BULGE, B11D(I), WORK(IU1SN+I-1),
  789:      $                       WORK(IU1CS+I-1), R )
  790:             ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
  791:                CALL DLARTGP( B12BULGE, B12E(I-1), WORK(IU1SN+I-1),
  792:      $                       WORK(IU1CS+I-1), R )
  793:             ELSE IF( MU .LE. NU ) THEN
  794:                CALL DLARTGS( B11E(I), B11D(I+1), MU, WORK(IU1CS+I-1),
  795:      $                       WORK(IU1SN+I-1) )
  796:             ELSE
  797:                CALL DLARTGS( B12D(I), B12E(I), NU, WORK(IU1CS+I-1),
  798:      $                       WORK(IU1SN+I-1) )
  799:             END IF
  800:             IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
  801:                CALL DLARTGP( Y2, Y1, WORK(IU2SN+I-1), WORK(IU2CS+I-1),
  802:      $                       R )
  803:             ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
  804:                CALL DLARTGP( B21BULGE, B21D(I), WORK(IU2SN+I-1),
  805:      $                       WORK(IU2CS+I-1), R )
  806:             ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
  807:                CALL DLARTGP( B22BULGE, B22E(I-1), WORK(IU2SN+I-1),
  808:      $                       WORK(IU2CS+I-1), R )
  809:             ELSE IF( NU .LT. MU ) THEN
  810:                CALL DLARTGS( B21E(I), B21E(I+1), NU, WORK(IU2CS+I-1),
  811:      $                       WORK(IU2SN+I-1) )
  812:             ELSE
  813:                CALL DLARTGS( B22D(I), B22E(I), MU, WORK(IU2CS+I-1),
  814:      $                       WORK(IU2SN+I-1) )
  815:             END IF
  816:             WORK(IU2CS+I-1) = -WORK(IU2CS+I-1)
  817:             WORK(IU2SN+I-1) = -WORK(IU2SN+I-1)
  818: *
  819:             TEMP = WORK(IU1CS+I-1)*B11E(I) + WORK(IU1SN+I-1)*B11D(I+1)
  820:             B11D(I+1) = WORK(IU1CS+I-1)*B11D(I+1) -
  821:      $                  WORK(IU1SN+I-1)*B11E(I)
  822:             B11E(I) = TEMP
  823:             IF( I .LT. IMAX - 1 ) THEN
  824:                B11BULGE = WORK(IU1SN+I-1)*B11E(I+1)
  825:                B11E(I+1) = WORK(IU1CS+I-1)*B11E(I+1)
  826:             END IF
  827:             TEMP = WORK(IU2CS+I-1)*B21E(I) + WORK(IU2SN+I-1)*B21D(I+1)
  828:             B21D(I+1) = WORK(IU2CS+I-1)*B21D(I+1) -
  829:      $                  WORK(IU2SN+I-1)*B21E(I)
  830:             B21E(I) = TEMP
  831:             IF( I .LT. IMAX - 1 ) THEN
  832:                B21BULGE = WORK(IU2SN+I-1)*B21E(I+1)
  833:                B21E(I+1) = WORK(IU2CS+I-1)*B21E(I+1)
  834:             END IF
  835:             TEMP = WORK(IU1CS+I-1)*B12D(I) + WORK(IU1SN+I-1)*B12E(I)
  836:             B12E(I) = WORK(IU1CS+I-1)*B12E(I) - WORK(IU1SN+I-1)*B12D(I)
  837:             B12D(I) = TEMP
  838:             B12BULGE = WORK(IU1SN+I-1)*B12D(I+1)
  839:             B12D(I+1) = WORK(IU1CS+I-1)*B12D(I+1)
  840:             TEMP = WORK(IU2CS+I-1)*B22D(I) + WORK(IU2SN+I-1)*B22E(I)
  841:             B22E(I) = WORK(IU2CS+I-1)*B22E(I) - WORK(IU2SN+I-1)*B22D(I)
  842:             B22D(I) = TEMP
  843:             B22BULGE = WORK(IU2SN+I-1)*B22D(I+1)
  844:             B22D(I+1) = WORK(IU2CS+I-1)*B22D(I+1)
  845: *
  846:          END DO
  847: *
  848: *        Compute PHI(IMAX-1)
  849: *
  850:          X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
  851:      $        COS(THETA(IMAX-1))*B21E(IMAX-1)
  852:          Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
  853:      $        COS(THETA(IMAX-1))*B22D(IMAX-1)
  854:          Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
  855: *
  856:          PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
  857: *
  858: *        Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
  859: *
  860:          RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
  861:          RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
  862: *
  863:          IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  864:             CALL DLARTGP( Y2, Y1, WORK(IV2TSN+IMAX-1-1),
  865:      $                    WORK(IV2TCS+IMAX-1-1), R )
  866:          ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  867:             CALL DLARTGP( B12BULGE, B12D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
  868:      $                    WORK(IV2TCS+IMAX-1-1), R )
  869:          ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  870:             CALL DLARTGP( B22BULGE, B22D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
  871:      $                    WORK(IV2TCS+IMAX-1-1), R )
  872:          ELSE IF( NU .LT. MU ) THEN
  873:             CALL DLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
  874:      $                    WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
  875:          ELSE
  876:             CALL DLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
  877:      $                    WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
  878:          END IF
  879: *
  880:          TEMP = WORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
  881:      $          WORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
  882:          B12D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
  883:      $                WORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
  884:          B12E(IMAX-1) = TEMP
  885:          TEMP = WORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
  886:      $          WORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
  887:          B22D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
  888:      $                WORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
  889:          B22E(IMAX-1) = TEMP
  890: *
  891: *        Update singular vectors
  892: *
  893:          IF( WANTU1 ) THEN
  894:             IF( COLMAJOR ) THEN
  895:                CALL DLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
  896:      $                     WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
  897:      $                     U1(1,IMIN), LDU1 )
  898:             ELSE
  899:                CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
  900:      $                     WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
  901:      $                     U1(IMIN,1), LDU1 )
  902:             END IF
  903:          END IF
  904:          IF( WANTU2 ) THEN
  905:             IF( COLMAJOR ) THEN
  906:                CALL DLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
  907:      $                     WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
  908:      $                     U2(1,IMIN), LDU2 )
  909:             ELSE
  910:                CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
  911:      $                     WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
  912:      $                     U2(IMIN,1), LDU2 )
  913:             END IF
  914:          END IF
  915:          IF( WANTV1T ) THEN
  916:             IF( COLMAJOR ) THEN
  917:                CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
  918:      $                     WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
  919:      $                     V1T(IMIN,1), LDV1T )
  920:             ELSE
  921:                CALL DLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
  922:      $                     WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
  923:      $                     V1T(1,IMIN), LDV1T )
  924:             END IF
  925:          END IF
  926:          IF( WANTV2T ) THEN
  927:             IF( COLMAJOR ) THEN
  928:                CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
  929:      $                     WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
  930:      $                     V2T(IMIN,1), LDV2T )
  931:             ELSE
  932:                CALL DLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
  933:      $                     WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
  934:      $                     V2T(1,IMIN), LDV2T )
  935:             END IF
  936:          END IF
  937: *
  938: *        Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
  939: *
  940:          IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
  941:             B11D(IMAX) = -B11D(IMAX)
  942:             B21D(IMAX) = -B21D(IMAX)
  943:             IF( WANTV1T ) THEN
  944:                IF( COLMAJOR ) THEN
  945:                   CALL DSCAL( Q, NEGONE, V1T(IMAX,1), LDV1T )
  946:                ELSE
  947:                   CALL DSCAL( Q, NEGONE, V1T(1,IMAX), 1 )
  948:                END IF
  949:             END IF
  950:          END IF
  951: *
  952: *        Compute THETA(IMAX)
  953: *
  954:          X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
  955:      $        SIN(PHI(IMAX-1))*B12E(IMAX-1)
  956:          Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
  957:      $        SIN(PHI(IMAX-1))*B22E(IMAX-1)
  958: *
  959:          THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
  960: *
  961: *        Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
  962: *        and B22(IMAX,IMAX-1)
  963: *
  964:          IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
  965:             B12D(IMAX) = -B12D(IMAX)
  966:             IF( WANTU1 ) THEN
  967:                IF( COLMAJOR ) THEN
  968:                   CALL DSCAL( P, NEGONE, U1(1,IMAX), 1 )
  969:                ELSE
  970:                   CALL DSCAL( P, NEGONE, U1(IMAX,1), LDU1 )
  971:                END IF
  972:             END IF
  973:          END IF
  974:          IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
  975:             B22D(IMAX) = -B22D(IMAX)
  976:             IF( WANTU2 ) THEN
  977:                IF( COLMAJOR ) THEN
  978:                   CALL DSCAL( M-P, NEGONE, U2(1,IMAX), 1 )
  979:                ELSE
  980:                   CALL DSCAL( M-P, NEGONE, U2(IMAX,1), LDU2 )
  981:                END IF
  982:             END IF
  983:          END IF
  984: *
  985: *        Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
  986: *
  987:          IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
  988:             IF( WANTV2T ) THEN
  989:                IF( COLMAJOR ) THEN
  990:                   CALL DSCAL( M-Q, NEGONE, V2T(IMAX,1), LDV2T )
  991:                ELSE
  992:                   CALL DSCAL( M-Q, NEGONE, V2T(1,IMAX), 1 )
  993:                END IF
  994:             END IF
  995:          END IF
  996: *
  997: *        Test for negligible sines or cosines
  998: *
  999:          DO I = IMIN, IMAX
 1000:             IF( THETA(I) .LT. THRESH ) THEN
 1001:                THETA(I) = ZERO
 1002:             ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
 1003:                THETA(I) = PIOVER2
 1004:             END IF
 1005:          END DO
 1006:          DO I = IMIN, IMAX-1
 1007:             IF( PHI(I) .LT. THRESH ) THEN
 1008:                PHI(I) = ZERO
 1009:             ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
 1010:                PHI(I) = PIOVER2
 1011:             END IF
 1012:          END DO
 1013: *
 1014: *        Deflate
 1015: *
 1016:          IF (IMAX .GT. 1) THEN
 1017:             DO WHILE( PHI(IMAX-1) .EQ. ZERO )
 1018:                IMAX = IMAX - 1
 1019:                IF (IMAX .LE. 1) EXIT
 1020:             END DO
 1021:          END IF
 1022:          IF( IMIN .GT. IMAX - 1 )
 1023:      $      IMIN = IMAX - 1
 1024:          IF (IMIN .GT. 1) THEN
 1025:             DO WHILE (PHI(IMIN-1) .NE. ZERO)
 1026:                 IMIN = IMIN - 1
 1027:                 IF (IMIN .LE. 1) EXIT
 1028:             END DO
 1029:          END IF
 1030: *
 1031: *        Repeat main iteration loop
 1032: *
 1033:       END DO
 1034: *
 1035: *     Postprocessing: order THETA from least to greatest
 1036: *
 1037:       DO I = 1, Q
 1038: *
 1039:          MINI = I
 1040:          THETAMIN = THETA(I)
 1041:          DO J = I+1, Q
 1042:             IF( THETA(J) .LT. THETAMIN ) THEN
 1043:                MINI = J
 1044:                THETAMIN = THETA(J)
 1045:             END IF
 1046:          END DO
 1047: *
 1048:          IF( MINI .NE. I ) THEN
 1049:             THETA(MINI) = THETA(I)
 1050:             THETA(I) = THETAMIN
 1051:             IF( COLMAJOR ) THEN
 1052:                IF( WANTU1 )
 1053:      $            CALL DSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
 1054:                IF( WANTU2 )
 1055:      $            CALL DSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
 1056:                IF( WANTV1T )
 1057:      $            CALL DSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
 1058:                IF( WANTV2T )
 1059:      $            CALL DSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
 1060:      $               LDV2T )
 1061:             ELSE
 1062:                IF( WANTU1 )
 1063:      $            CALL DSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
 1064:                IF( WANTU2 )
 1065:      $            CALL DSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
 1066:                IF( WANTV1T )
 1067:      $            CALL DSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
 1068:                IF( WANTV2T )
 1069:      $            CALL DSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
 1070:             END IF
 1071:          END IF
 1072: *
 1073:       END DO
 1074: *
 1075:       RETURN
 1076: *
 1077: *     End of DBBCSD
 1078: *
 1079:       END
 1080: 

CVSweb interface <joel.bertrand@systella.fr>