File:  [local] / rpl / lapack / lapack / dbbcsd.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:47 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DBBCSD
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DBBCSD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbbcsd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbbcsd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbbcsd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
   22: *                          THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
   23: *                          V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
   24: *                          B22D, B22E, WORK, LWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
   28: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   B11D( * ), B11E( * ), B12D( * ), B12E( * ),
   32: *      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
   33: *      $                   PHI( * ), THETA( * ), WORK( * )
   34: *       DOUBLE PRECISION   U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
   35: *      $                   V2T( LDV2T, * )
   36: *       ..
   37: *
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> DBBCSD computes the CS decomposition of an orthogonal matrix in
   45: *> bidiagonal-block form,
   46: *>
   47: *>
   48: *>     [ B11 | B12 0  0 ]
   49: *>     [  0  |  0 -I  0 ]
   50: *> X = [----------------]
   51: *>     [ B21 | B22 0  0 ]
   52: *>     [  0  |  0  0  I ]
   53: *>
   54: *>                               [  C | -S  0  0 ]
   55: *>                   [ U1 |    ] [  0 |  0 -I  0 ] [ V1 |    ]**T
   56: *>                 = [---------] [---------------] [---------]   .
   57: *>                   [    | U2 ] [  S |  C  0  0 ] [    | V2 ]
   58: *>                               [  0 |  0  0  I ]
   59: *>
   60: *> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
   61: *> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
   62: *> transposed and/or permuted. This can be done in constant time using
   63: *> the TRANS and SIGNS options. See DORCSD for details.)
   64: *>
   65: *> The bidiagonal matrices B11, B12, B21, and B22 are represented
   66: *> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
   67: *>
   68: *> The orthogonal matrices U1, U2, V1T, and V2T are input/output.
   69: *> The input matrices are pre- or post-multiplied by the appropriate
   70: *> singular vector matrices.
   71: *> \endverbatim
   72: *
   73: *  Arguments:
   74: *  ==========
   75: *
   76: *> \param[in] JOBU1
   77: *> \verbatim
   78: *>          JOBU1 is CHARACTER
   79: *>          = 'Y':      U1 is updated;
   80: *>          otherwise:  U1 is not updated.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] JOBU2
   84: *> \verbatim
   85: *>          JOBU2 is CHARACTER
   86: *>          = 'Y':      U2 is updated;
   87: *>          otherwise:  U2 is not updated.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] JOBV1T
   91: *> \verbatim
   92: *>          JOBV1T is CHARACTER
   93: *>          = 'Y':      V1T is updated;
   94: *>          otherwise:  V1T is not updated.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] JOBV2T
   98: *> \verbatim
   99: *>          JOBV2T is CHARACTER
  100: *>          = 'Y':      V2T is updated;
  101: *>          otherwise:  V2T is not updated.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] TRANS
  105: *> \verbatim
  106: *>          TRANS is CHARACTER
  107: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
  108: *>                      order;
  109: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
  110: *>                      major order.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] M
  114: *> \verbatim
  115: *>          M is INTEGER
  116: *>          The number of rows and columns in X, the orthogonal matrix in
  117: *>          bidiagonal-block form.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] P
  121: *> \verbatim
  122: *>          P is INTEGER
  123: *>          The number of rows in the top-left block of X. 0 <= P <= M.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] Q
  127: *> \verbatim
  128: *>          Q is INTEGER
  129: *>          The number of columns in the top-left block of X.
  130: *>          0 <= Q <= MIN(P,M-P,M-Q).
  131: *> \endverbatim
  132: *>
  133: *> \param[in,out] THETA
  134: *> \verbatim
  135: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  136: *>          On entry, the angles THETA(1),...,THETA(Q) that, along with
  137: *>          PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
  138: *>          form. On exit, the angles whose cosines and sines define the
  139: *>          diagonal blocks in the CS decomposition.
  140: *> \endverbatim
  141: *>
  142: *> \param[in,out] PHI
  143: *> \verbatim
  144: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  145: *>          The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
  146: *>          THETA(Q), define the matrix in bidiagonal-block form.
  147: *> \endverbatim
  148: *>
  149: *> \param[in,out] U1
  150: *> \verbatim
  151: *>          U1 is DOUBLE PRECISION array, dimension (LDU1,P)
  152: *>          On entry, a P-by-P matrix. On exit, U1 is postmultiplied
  153: *>          by the left singular vector matrix common to [ B11 ; 0 ] and
  154: *>          [ B12 0 0 ; 0 -I 0 0 ].
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LDU1
  158: *> \verbatim
  159: *>          LDU1 is INTEGER
  160: *>          The leading dimension of the array U1, LDU1 >= MAX(1,P).
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] U2
  164: *> \verbatim
  165: *>          U2 is DOUBLE PRECISION array, dimension (LDU2,M-P)
  166: *>          On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is
  167: *>          postmultiplied by the left singular vector matrix common to
  168: *>          [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDU2
  172: *> \verbatim
  173: *>          LDU2 is INTEGER
  174: *>          The leading dimension of the array U2, LDU2 >= MAX(1,M-P).
  175: *> \endverbatim
  176: *>
  177: *> \param[in,out] V1T
  178: *> \verbatim
  179: *>          V1T is DOUBLE PRECISION array, dimension (LDV1T,Q)
  180: *>          On entry, a Q-by-Q matrix. On exit, V1T is premultiplied
  181: *>          by the transpose of the right singular vector
  182: *>          matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
  183: *> \endverbatim
  184: *>
  185: *> \param[in] LDV1T
  186: *> \verbatim
  187: *>          LDV1T is INTEGER
  188: *>          The leading dimension of the array V1T, LDV1T >= MAX(1,Q).
  189: *> \endverbatim
  190: *>
  191: *> \param[in,out] V2T
  192: *> \verbatim
  193: *>          V2T is DOUBLE PRECISION array, dimension (LDV2T,M-Q)
  194: *>          On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is
  195: *>          premultiplied by the transpose of the right
  196: *>          singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
  197: *>          [ B22 0 0 ; 0 0 I ].
  198: *> \endverbatim
  199: *>
  200: *> \param[in] LDV2T
  201: *> \verbatim
  202: *>          LDV2T is INTEGER
  203: *>          The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q).
  204: *> \endverbatim
  205: *>
  206: *> \param[out] B11D
  207: *> \verbatim
  208: *>          B11D is DOUBLE PRECISION array, dimension (Q)
  209: *>          When DBBCSD converges, B11D contains the cosines of THETA(1),
  210: *>          ..., THETA(Q). If DBBCSD fails to converge, then B11D
  211: *>          contains the diagonal of the partially reduced top-left
  212: *>          block.
  213: *> \endverbatim
  214: *>
  215: *> \param[out] B11E
  216: *> \verbatim
  217: *>          B11E is DOUBLE PRECISION array, dimension (Q-1)
  218: *>          When DBBCSD converges, B11E contains zeros. If DBBCSD fails
  219: *>          to converge, then B11E contains the superdiagonal of the
  220: *>          partially reduced top-left block.
  221: *> \endverbatim
  222: *>
  223: *> \param[out] B12D
  224: *> \verbatim
  225: *>          B12D is DOUBLE PRECISION array, dimension (Q)
  226: *>          When DBBCSD converges, B12D contains the negative sines of
  227: *>          THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then
  228: *>          B12D contains the diagonal of the partially reduced top-right
  229: *>          block.
  230: *> \endverbatim
  231: *>
  232: *> \param[out] B12E
  233: *> \verbatim
  234: *>          B12E is DOUBLE PRECISION array, dimension (Q-1)
  235: *>          When DBBCSD converges, B12E contains zeros. If DBBCSD fails
  236: *>          to converge, then B12E contains the subdiagonal of the
  237: *>          partially reduced top-right block.
  238: *> \endverbatim
  239: *>
  240: *> \param[out] B21D
  241: *> \verbatim
  242: *>          B21D is DOUBLE PRECISION  array, dimension (Q)
  243: *>          When DBBCSD converges, B21D contains the negative sines of
  244: *>          THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then
  245: *>          B21D contains the diagonal of the partially reduced bottom-left
  246: *>          block.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] B21E
  250: *> \verbatim
  251: *>          B21E is DOUBLE PRECISION  array, dimension (Q-1)
  252: *>          When DBBCSD converges, B21E contains zeros. If DBBCSD fails
  253: *>          to converge, then B21E contains the subdiagonal of the
  254: *>          partially reduced bottom-left block.
  255: *> \endverbatim
  256: *>
  257: *> \param[out] B22D
  258: *> \verbatim
  259: *>          B22D is DOUBLE PRECISION  array, dimension (Q)
  260: *>          When DBBCSD converges, B22D contains the negative sines of
  261: *>          THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then
  262: *>          B22D contains the diagonal of the partially reduced bottom-right
  263: *>          block.
  264: *> \endverbatim
  265: *>
  266: *> \param[out] B22E
  267: *> \verbatim
  268: *>          B22E is DOUBLE PRECISION  array, dimension (Q-1)
  269: *>          When DBBCSD converges, B22E contains zeros. If DBBCSD fails
  270: *>          to converge, then B22E contains the subdiagonal of the
  271: *>          partially reduced bottom-right block.
  272: *> \endverbatim
  273: *>
  274: *> \param[out] WORK
  275: *> \verbatim
  276: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  277: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  278: *> \endverbatim
  279: *>
  280: *> \param[in] LWORK
  281: *> \verbatim
  282: *>          LWORK is INTEGER
  283: *>          The dimension of the array WORK. LWORK >= MAX(1,8*Q).
  284: *>
  285: *>          If LWORK = -1, then a workspace query is assumed; the
  286: *>          routine only calculates the optimal size of the WORK array,
  287: *>          returns this value as the first entry of the work array, and
  288: *>          no error message related to LWORK is issued by XERBLA.
  289: *> \endverbatim
  290: *>
  291: *> \param[out] INFO
  292: *> \verbatim
  293: *>          INFO is INTEGER
  294: *>          = 0:  successful exit.
  295: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  296: *>          > 0:  if DBBCSD did not converge, INFO specifies the number
  297: *>                of nonzero entries in PHI, and B11D, B11E, etc.,
  298: *>                contain the partially reduced matrix.
  299: *> \endverbatim
  300: *
  301: *> \par Internal Parameters:
  302: *  =========================
  303: *>
  304: *> \verbatim
  305: *>  TOLMUL  DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
  306: *>          TOLMUL controls the convergence criterion of the QR loop.
  307: *>          Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
  308: *>          are within TOLMUL*EPS of either bound.
  309: *> \endverbatim
  310: *
  311: *> \par References:
  312: *  ================
  313: *>
  314: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  315: *>      Algorithms, 50(1):33-65, 2009.
  316: *
  317: *  Authors:
  318: *  ========
  319: *
  320: *> \author Univ. of Tennessee
  321: *> \author Univ. of California Berkeley
  322: *> \author Univ. of Colorado Denver
  323: *> \author NAG Ltd.
  324: *
  325: *> \ingroup doubleOTHERcomputational
  326: *
  327: *  =====================================================================
  328:       SUBROUTINE DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
  329:      $                   THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
  330:      $                   V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
  331:      $                   B22D, B22E, WORK, LWORK, INFO )
  332: *
  333: *  -- LAPACK computational routine --
  334: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  335: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  336: *
  337: *     .. Scalar Arguments ..
  338:       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
  339:       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
  340: *     ..
  341: *     .. Array Arguments ..
  342:       DOUBLE PRECISION   B11D( * ), B11E( * ), B12D( * ), B12E( * ),
  343:      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
  344:      $                   PHI( * ), THETA( * ), WORK( * )
  345:       DOUBLE PRECISION   U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
  346:      $                   V2T( LDV2T, * )
  347: *     ..
  348: *
  349: *  ===================================================================
  350: *
  351: *     .. Parameters ..
  352:       INTEGER            MAXITR
  353:       PARAMETER          ( MAXITR = 6 )
  354:       DOUBLE PRECISION   HUNDRED, MEIGHTH, ONE, TEN, ZERO
  355:       PARAMETER          ( HUNDRED = 100.0D0, MEIGHTH = -0.125D0,
  356:      $                     ONE = 1.0D0, TEN = 10.0D0, ZERO = 0.0D0 )
  357:       DOUBLE PRECISION   NEGONE
  358:       PARAMETER          ( NEGONE = -1.0D0 )
  359:       DOUBLE PRECISION   PIOVER2
  360:       PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210D0 )
  361: *     ..
  362: *     .. Local Scalars ..
  363:       LOGICAL            COLMAJOR, LQUERY, RESTART11, RESTART12,
  364:      $                   RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
  365:      $                   WANTV2T
  366:       INTEGER            I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
  367:      $                   IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
  368:      $                   LWORKMIN, LWORKOPT, MAXIT, MINI
  369:       DOUBLE PRECISION   B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
  370:      $                   EPS, MU, NU, R, SIGMA11, SIGMA21,
  371:      $                   TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
  372:      $                   UNFL, X1, X2, Y1, Y2
  373: *
  374: *     .. External Subroutines ..
  375:       EXTERNAL           DLASR, DSCAL, DSWAP, DLARTGP, DLARTGS, DLAS2,
  376:      $                   XERBLA
  377: *     ..
  378: *     .. External Functions ..
  379:       DOUBLE PRECISION   DLAMCH
  380:       LOGICAL            LSAME
  381:       EXTERNAL           LSAME, DLAMCH
  382: *     ..
  383: *     .. Intrinsic Functions ..
  384:       INTRINSIC          ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
  385: *     ..
  386: *     .. Executable Statements ..
  387: *
  388: *     Test input arguments
  389: *
  390:       INFO = 0
  391:       LQUERY = LWORK .EQ. -1
  392:       WANTU1 = LSAME( JOBU1, 'Y' )
  393:       WANTU2 = LSAME( JOBU2, 'Y' )
  394:       WANTV1T = LSAME( JOBV1T, 'Y' )
  395:       WANTV2T = LSAME( JOBV2T, 'Y' )
  396:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  397: *
  398:       IF( M .LT. 0 ) THEN
  399:          INFO = -6
  400:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  401:          INFO = -7
  402:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  403:          INFO = -8
  404:       ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
  405:          INFO = -8
  406:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  407:          INFO = -12
  408:       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
  409:          INFO = -14
  410:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  411:          INFO = -16
  412:       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
  413:          INFO = -18
  414:       END IF
  415: *
  416: *     Quick return if Q = 0
  417: *
  418:       IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
  419:          LWORKMIN = 1
  420:          WORK(1) = LWORKMIN
  421:          RETURN
  422:       END IF
  423: *
  424: *     Compute workspace
  425: *
  426:       IF( INFO .EQ. 0 ) THEN
  427:          IU1CS = 1
  428:          IU1SN = IU1CS + Q
  429:          IU2CS = IU1SN + Q
  430:          IU2SN = IU2CS + Q
  431:          IV1TCS = IU2SN + Q
  432:          IV1TSN = IV1TCS + Q
  433:          IV2TCS = IV1TSN + Q
  434:          IV2TSN = IV2TCS + Q
  435:          LWORKOPT = IV2TSN + Q - 1
  436:          LWORKMIN = LWORKOPT
  437:          WORK(1) = LWORKOPT
  438:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  439:             INFO = -28
  440:          END IF
  441:       END IF
  442: *
  443:       IF( INFO .NE. 0 ) THEN
  444:          CALL XERBLA( 'DBBCSD', -INFO )
  445:          RETURN
  446:       ELSE IF( LQUERY ) THEN
  447:          RETURN
  448:       END IF
  449: *
  450: *     Get machine constants
  451: *
  452:       EPS = DLAMCH( 'Epsilon' )
  453:       UNFL = DLAMCH( 'Safe minimum' )
  454:       TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
  455:       TOL = TOLMUL*EPS
  456:       THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
  457: *
  458: *     Test for negligible sines or cosines
  459: *
  460:       DO I = 1, Q
  461:          IF( THETA(I) .LT. THRESH ) THEN
  462:             THETA(I) = ZERO
  463:          ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
  464:             THETA(I) = PIOVER2
  465:          END IF
  466:       END DO
  467:       DO I = 1, Q-1
  468:          IF( PHI(I) .LT. THRESH ) THEN
  469:             PHI(I) = ZERO
  470:          ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
  471:             PHI(I) = PIOVER2
  472:          END IF
  473:       END DO
  474: *
  475: *     Initial deflation
  476: *
  477:       IMAX = Q
  478:       DO WHILE( IMAX .GT. 1 )
  479:          IF( PHI(IMAX-1) .NE. ZERO ) THEN
  480:             EXIT
  481:          END IF
  482:          IMAX = IMAX - 1
  483:       END DO
  484:       IMIN = IMAX - 1
  485:       IF  ( IMIN .GT. 1 ) THEN
  486:          DO WHILE( PHI(IMIN-1) .NE. ZERO )
  487:             IMIN = IMIN - 1
  488:             IF  ( IMIN .LE. 1 ) EXIT
  489:          END DO
  490:       END IF
  491: *
  492: *     Initialize iteration counter
  493: *
  494:       MAXIT = MAXITR*Q*Q
  495:       ITER = 0
  496: *
  497: *     Begin main iteration loop
  498: *
  499:       DO WHILE( IMAX .GT. 1 )
  500: *
  501: *        Compute the matrix entries
  502: *
  503:          B11D(IMIN) = COS( THETA(IMIN) )
  504:          B21D(IMIN) = -SIN( THETA(IMIN) )
  505:          DO I = IMIN, IMAX - 1
  506:             B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
  507:             B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
  508:             B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
  509:             B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
  510:             B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
  511:             B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
  512:             B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
  513:             B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
  514:          END DO
  515:          B12D(IMAX) = SIN( THETA(IMAX) )
  516:          B22D(IMAX) = COS( THETA(IMAX) )
  517: *
  518: *        Abort if not converging; otherwise, increment ITER
  519: *
  520:          IF( ITER .GT. MAXIT ) THEN
  521:             INFO = 0
  522:             DO I = 1, Q
  523:                IF( PHI(I) .NE. ZERO )
  524:      $            INFO = INFO + 1
  525:             END DO
  526:             RETURN
  527:          END IF
  528: *
  529:          ITER = ITER + IMAX - IMIN
  530: *
  531: *        Compute shifts
  532: *
  533:          THETAMAX = THETA(IMIN)
  534:          THETAMIN = THETA(IMIN)
  535:          DO I = IMIN+1, IMAX
  536:             IF( THETA(I) > THETAMAX )
  537:      $         THETAMAX = THETA(I)
  538:             IF( THETA(I) < THETAMIN )
  539:      $         THETAMIN = THETA(I)
  540:          END DO
  541: *
  542:          IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
  543: *
  544: *           Zero on diagonals of B11 and B22; induce deflation with a
  545: *           zero shift
  546: *
  547:             MU = ZERO
  548:             NU = ONE
  549: *
  550:          ELSE IF( THETAMIN .LT. THRESH ) THEN
  551: *
  552: *           Zero on diagonals of B12 and B22; induce deflation with a
  553: *           zero shift
  554: *
  555:             MU = ONE
  556:             NU = ZERO
  557: *
  558:          ELSE
  559: *
  560: *           Compute shifts for B11 and B21 and use the lesser
  561: *
  562:             CALL DLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
  563:      $                  DUMMY )
  564:             CALL DLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
  565:      $                  DUMMY )
  566: *
  567:             IF( SIGMA11 .LE. SIGMA21 ) THEN
  568:                MU = SIGMA11
  569:                NU = SQRT( ONE - MU**2 )
  570:                IF( MU .LT. THRESH ) THEN
  571:                   MU = ZERO
  572:                   NU = ONE
  573:                END IF
  574:             ELSE
  575:                NU = SIGMA21
  576:                MU = SQRT( 1.0 - NU**2 )
  577:                IF( NU .LT. THRESH ) THEN
  578:                   MU = ONE
  579:                   NU = ZERO
  580:                END IF
  581:             END IF
  582:          END IF
  583: *
  584: *        Rotate to produce bulges in B11 and B21
  585: *
  586:          IF( MU .LE. NU ) THEN
  587:             CALL DLARTGS( B11D(IMIN), B11E(IMIN), MU,
  588:      $                    WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
  589:          ELSE
  590:             CALL DLARTGS( B21D(IMIN), B21E(IMIN), NU,
  591:      $                    WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
  592:          END IF
  593: *
  594:          TEMP = WORK(IV1TCS+IMIN-1)*B11D(IMIN) +
  595:      $          WORK(IV1TSN+IMIN-1)*B11E(IMIN)
  596:          B11E(IMIN) = WORK(IV1TCS+IMIN-1)*B11E(IMIN) -
  597:      $                WORK(IV1TSN+IMIN-1)*B11D(IMIN)
  598:          B11D(IMIN) = TEMP
  599:          B11BULGE = WORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
  600:          B11D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
  601:          TEMP = WORK(IV1TCS+IMIN-1)*B21D(IMIN) +
  602:      $          WORK(IV1TSN+IMIN-1)*B21E(IMIN)
  603:          B21E(IMIN) = WORK(IV1TCS+IMIN-1)*B21E(IMIN) -
  604:      $                WORK(IV1TSN+IMIN-1)*B21D(IMIN)
  605:          B21D(IMIN) = TEMP
  606:          B21BULGE = WORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
  607:          B21D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
  608: *
  609: *        Compute THETA(IMIN)
  610: *
  611:          THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
  612:      $                   SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
  613: *
  614: *        Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
  615: *
  616:          IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
  617:             CALL DLARTGP( B11BULGE, B11D(IMIN), WORK(IU1SN+IMIN-1),
  618:      $                    WORK(IU1CS+IMIN-1), R )
  619:          ELSE IF( MU .LE. NU ) THEN
  620:             CALL DLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
  621:      $                    WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
  622:          ELSE
  623:             CALL DLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
  624:      $                    WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
  625:          END IF
  626:          IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
  627:             CALL DLARTGP( B21BULGE, B21D(IMIN), WORK(IU2SN+IMIN-1),
  628:      $                    WORK(IU2CS+IMIN-1), R )
  629:          ELSE IF( NU .LT. MU ) THEN
  630:             CALL DLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
  631:      $                    WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
  632:          ELSE
  633:             CALL DLARTGS( B22D(IMIN), B22E(IMIN), MU,
  634:      $                    WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
  635:          END IF
  636:          WORK(IU2CS+IMIN-1) = -WORK(IU2CS+IMIN-1)
  637:          WORK(IU2SN+IMIN-1) = -WORK(IU2SN+IMIN-1)
  638: *
  639:          TEMP = WORK(IU1CS+IMIN-1)*B11E(IMIN) +
  640:      $          WORK(IU1SN+IMIN-1)*B11D(IMIN+1)
  641:          B11D(IMIN+1) = WORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
  642:      $                  WORK(IU1SN+IMIN-1)*B11E(IMIN)
  643:          B11E(IMIN) = TEMP
  644:          IF( IMAX .GT. IMIN+1 ) THEN
  645:             B11BULGE = WORK(IU1SN+IMIN-1)*B11E(IMIN+1)
  646:             B11E(IMIN+1) = WORK(IU1CS+IMIN-1)*B11E(IMIN+1)
  647:          END IF
  648:          TEMP = WORK(IU1CS+IMIN-1)*B12D(IMIN) +
  649:      $          WORK(IU1SN+IMIN-1)*B12E(IMIN)
  650:          B12E(IMIN) = WORK(IU1CS+IMIN-1)*B12E(IMIN) -
  651:      $                WORK(IU1SN+IMIN-1)*B12D(IMIN)
  652:          B12D(IMIN) = TEMP
  653:          B12BULGE = WORK(IU1SN+IMIN-1)*B12D(IMIN+1)
  654:          B12D(IMIN+1) = WORK(IU1CS+IMIN-1)*B12D(IMIN+1)
  655:          TEMP = WORK(IU2CS+IMIN-1)*B21E(IMIN) +
  656:      $          WORK(IU2SN+IMIN-1)*B21D(IMIN+1)
  657:          B21D(IMIN+1) = WORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
  658:      $                  WORK(IU2SN+IMIN-1)*B21E(IMIN)
  659:          B21E(IMIN) = TEMP
  660:          IF( IMAX .GT. IMIN+1 ) THEN
  661:             B21BULGE = WORK(IU2SN+IMIN-1)*B21E(IMIN+1)
  662:             B21E(IMIN+1) = WORK(IU2CS+IMIN-1)*B21E(IMIN+1)
  663:          END IF
  664:          TEMP = WORK(IU2CS+IMIN-1)*B22D(IMIN) +
  665:      $          WORK(IU2SN+IMIN-1)*B22E(IMIN)
  666:          B22E(IMIN) = WORK(IU2CS+IMIN-1)*B22E(IMIN) -
  667:      $                WORK(IU2SN+IMIN-1)*B22D(IMIN)
  668:          B22D(IMIN) = TEMP
  669:          B22BULGE = WORK(IU2SN+IMIN-1)*B22D(IMIN+1)
  670:          B22D(IMIN+1) = WORK(IU2CS+IMIN-1)*B22D(IMIN+1)
  671: *
  672: *        Inner loop: chase bulges from B11(IMIN,IMIN+2),
  673: *        B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
  674: *        bottom-right
  675: *
  676:          DO I = IMIN+1, IMAX-1
  677: *
  678: *           Compute PHI(I-1)
  679: *
  680:             X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
  681:             X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
  682:             Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
  683:             Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
  684: *
  685:             PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
  686: *
  687: *           Determine if there are bulges to chase or if a new direct
  688: *           summand has been reached
  689: *
  690:             RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
  691:             RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
  692:             RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  693:             RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  694: *
  695: *           If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
  696: *           B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
  697: *           chasing by applying the original shift again.
  698: *
  699:             IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
  700:                CALL DLARTGP( X2, X1, WORK(IV1TSN+I-1), WORK(IV1TCS+I-1),
  701:      $                       R )
  702:             ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
  703:                CALL DLARTGP( B11BULGE, B11E(I-1), WORK(IV1TSN+I-1),
  704:      $                       WORK(IV1TCS+I-1), R )
  705:             ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
  706:                CALL DLARTGP( B21BULGE, B21E(I-1), WORK(IV1TSN+I-1),
  707:      $                       WORK(IV1TCS+I-1), R )
  708:             ELSE IF( MU .LE. NU ) THEN
  709:                CALL DLARTGS( B11D(I), B11E(I), MU, WORK(IV1TCS+I-1),
  710:      $                       WORK(IV1TSN+I-1) )
  711:             ELSE
  712:                CALL DLARTGS( B21D(I), B21E(I), NU, WORK(IV1TCS+I-1),
  713:      $                       WORK(IV1TSN+I-1) )
  714:             END IF
  715:             WORK(IV1TCS+I-1) = -WORK(IV1TCS+I-1)
  716:             WORK(IV1TSN+I-1) = -WORK(IV1TSN+I-1)
  717:             IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  718:                CALL DLARTGP( Y2, Y1, WORK(IV2TSN+I-1-1),
  719:      $                       WORK(IV2TCS+I-1-1), R )
  720:             ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  721:                CALL DLARTGP( B12BULGE, B12D(I-1), WORK(IV2TSN+I-1-1),
  722:      $                       WORK(IV2TCS+I-1-1), R )
  723:             ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  724:                CALL DLARTGP( B22BULGE, B22D(I-1), WORK(IV2TSN+I-1-1),
  725:      $                       WORK(IV2TCS+I-1-1), R )
  726:             ELSE IF( NU .LT. MU ) THEN
  727:                CALL DLARTGS( B12E(I-1), B12D(I), NU, WORK(IV2TCS+I-1-1),
  728:      $                       WORK(IV2TSN+I-1-1) )
  729:             ELSE
  730:                CALL DLARTGS( B22E(I-1), B22D(I), MU, WORK(IV2TCS+I-1-1),
  731:      $                       WORK(IV2TSN+I-1-1) )
  732:             END IF
  733: *
  734:             TEMP = WORK(IV1TCS+I-1)*B11D(I) + WORK(IV1TSN+I-1)*B11E(I)
  735:             B11E(I) = WORK(IV1TCS+I-1)*B11E(I) -
  736:      $                WORK(IV1TSN+I-1)*B11D(I)
  737:             B11D(I) = TEMP
  738:             B11BULGE = WORK(IV1TSN+I-1)*B11D(I+1)
  739:             B11D(I+1) = WORK(IV1TCS+I-1)*B11D(I+1)
  740:             TEMP = WORK(IV1TCS+I-1)*B21D(I) + WORK(IV1TSN+I-1)*B21E(I)
  741:             B21E(I) = WORK(IV1TCS+I-1)*B21E(I) -
  742:      $                WORK(IV1TSN+I-1)*B21D(I)
  743:             B21D(I) = TEMP
  744:             B21BULGE = WORK(IV1TSN+I-1)*B21D(I+1)
  745:             B21D(I+1) = WORK(IV1TCS+I-1)*B21D(I+1)
  746:             TEMP = WORK(IV2TCS+I-1-1)*B12E(I-1) +
  747:      $             WORK(IV2TSN+I-1-1)*B12D(I)
  748:             B12D(I) = WORK(IV2TCS+I-1-1)*B12D(I) -
  749:      $                WORK(IV2TSN+I-1-1)*B12E(I-1)
  750:             B12E(I-1) = TEMP
  751:             B12BULGE = WORK(IV2TSN+I-1-1)*B12E(I)
  752:             B12E(I) = WORK(IV2TCS+I-1-1)*B12E(I)
  753:             TEMP = WORK(IV2TCS+I-1-1)*B22E(I-1) +
  754:      $             WORK(IV2TSN+I-1-1)*B22D(I)
  755:             B22D(I) = WORK(IV2TCS+I-1-1)*B22D(I) -
  756:      $                WORK(IV2TSN+I-1-1)*B22E(I-1)
  757:             B22E(I-1) = TEMP
  758:             B22BULGE = WORK(IV2TSN+I-1-1)*B22E(I)
  759:             B22E(I) = WORK(IV2TCS+I-1-1)*B22E(I)
  760: *
  761: *           Compute THETA(I)
  762: *
  763:             X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
  764:             X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
  765:             Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
  766:             Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
  767: *
  768:             THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
  769: *
  770: *           Determine if there are bulges to chase or if a new direct
  771: *           summand has been reached
  772: *
  773:             RESTART11 =   B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
  774:             RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  775:             RESTART21 =   B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
  776:             RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  777: *
  778: *           If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
  779: *           B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
  780: *           chasing by applying the original shift again.
  781: *
  782:             IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
  783:                CALL DLARTGP( X2, X1, WORK(IU1SN+I-1), WORK(IU1CS+I-1),
  784:      $                       R )
  785:             ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
  786:                CALL DLARTGP( B11BULGE, B11D(I), WORK(IU1SN+I-1),
  787:      $                       WORK(IU1CS+I-1), R )
  788:             ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
  789:                CALL DLARTGP( B12BULGE, B12E(I-1), WORK(IU1SN+I-1),
  790:      $                       WORK(IU1CS+I-1), R )
  791:             ELSE IF( MU .LE. NU ) THEN
  792:                CALL DLARTGS( B11E(I), B11D(I+1), MU, WORK(IU1CS+I-1),
  793:      $                       WORK(IU1SN+I-1) )
  794:             ELSE
  795:                CALL DLARTGS( B12D(I), B12E(I), NU, WORK(IU1CS+I-1),
  796:      $                       WORK(IU1SN+I-1) )
  797:             END IF
  798:             IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
  799:                CALL DLARTGP( Y2, Y1, WORK(IU2SN+I-1), WORK(IU2CS+I-1),
  800:      $                       R )
  801:             ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
  802:                CALL DLARTGP( B21BULGE, B21D(I), WORK(IU2SN+I-1),
  803:      $                       WORK(IU2CS+I-1), R )
  804:             ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
  805:                CALL DLARTGP( B22BULGE, B22E(I-1), WORK(IU2SN+I-1),
  806:      $                       WORK(IU2CS+I-1), R )
  807:             ELSE IF( NU .LT. MU ) THEN
  808:                CALL DLARTGS( B21E(I), B21E(I+1), NU, WORK(IU2CS+I-1),
  809:      $                       WORK(IU2SN+I-1) )
  810:             ELSE
  811:                CALL DLARTGS( B22D(I), B22E(I), MU, WORK(IU2CS+I-1),
  812:      $                       WORK(IU2SN+I-1) )
  813:             END IF
  814:             WORK(IU2CS+I-1) = -WORK(IU2CS+I-1)
  815:             WORK(IU2SN+I-1) = -WORK(IU2SN+I-1)
  816: *
  817:             TEMP = WORK(IU1CS+I-1)*B11E(I) + WORK(IU1SN+I-1)*B11D(I+1)
  818:             B11D(I+1) = WORK(IU1CS+I-1)*B11D(I+1) -
  819:      $                  WORK(IU1SN+I-1)*B11E(I)
  820:             B11E(I) = TEMP
  821:             IF( I .LT. IMAX - 1 ) THEN
  822:                B11BULGE = WORK(IU1SN+I-1)*B11E(I+1)
  823:                B11E(I+1) = WORK(IU1CS+I-1)*B11E(I+1)
  824:             END IF
  825:             TEMP = WORK(IU2CS+I-1)*B21E(I) + WORK(IU2SN+I-1)*B21D(I+1)
  826:             B21D(I+1) = WORK(IU2CS+I-1)*B21D(I+1) -
  827:      $                  WORK(IU2SN+I-1)*B21E(I)
  828:             B21E(I) = TEMP
  829:             IF( I .LT. IMAX - 1 ) THEN
  830:                B21BULGE = WORK(IU2SN+I-1)*B21E(I+1)
  831:                B21E(I+1) = WORK(IU2CS+I-1)*B21E(I+1)
  832:             END IF
  833:             TEMP = WORK(IU1CS+I-1)*B12D(I) + WORK(IU1SN+I-1)*B12E(I)
  834:             B12E(I) = WORK(IU1CS+I-1)*B12E(I) - WORK(IU1SN+I-1)*B12D(I)
  835:             B12D(I) = TEMP
  836:             B12BULGE = WORK(IU1SN+I-1)*B12D(I+1)
  837:             B12D(I+1) = WORK(IU1CS+I-1)*B12D(I+1)
  838:             TEMP = WORK(IU2CS+I-1)*B22D(I) + WORK(IU2SN+I-1)*B22E(I)
  839:             B22E(I) = WORK(IU2CS+I-1)*B22E(I) - WORK(IU2SN+I-1)*B22D(I)
  840:             B22D(I) = TEMP
  841:             B22BULGE = WORK(IU2SN+I-1)*B22D(I+1)
  842:             B22D(I+1) = WORK(IU2CS+I-1)*B22D(I+1)
  843: *
  844:          END DO
  845: *
  846: *        Compute PHI(IMAX-1)
  847: *
  848:          X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
  849:      $        COS(THETA(IMAX-1))*B21E(IMAX-1)
  850:          Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
  851:      $        COS(THETA(IMAX-1))*B22D(IMAX-1)
  852:          Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
  853: *
  854:          PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
  855: *
  856: *        Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
  857: *
  858:          RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
  859:          RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
  860: *
  861:          IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  862:             CALL DLARTGP( Y2, Y1, WORK(IV2TSN+IMAX-1-1),
  863:      $                    WORK(IV2TCS+IMAX-1-1), R )
  864:          ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  865:             CALL DLARTGP( B12BULGE, B12D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
  866:      $                    WORK(IV2TCS+IMAX-1-1), R )
  867:          ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  868:             CALL DLARTGP( B22BULGE, B22D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
  869:      $                    WORK(IV2TCS+IMAX-1-1), R )
  870:          ELSE IF( NU .LT. MU ) THEN
  871:             CALL DLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
  872:      $                    WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
  873:          ELSE
  874:             CALL DLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
  875:      $                    WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
  876:          END IF
  877: *
  878:          TEMP = WORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
  879:      $          WORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
  880:          B12D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
  881:      $                WORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
  882:          B12E(IMAX-1) = TEMP
  883:          TEMP = WORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
  884:      $          WORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
  885:          B22D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
  886:      $                WORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
  887:          B22E(IMAX-1) = TEMP
  888: *
  889: *        Update singular vectors
  890: *
  891:          IF( WANTU1 ) THEN
  892:             IF( COLMAJOR ) THEN
  893:                CALL DLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
  894:      $                     WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
  895:      $                     U1(1,IMIN), LDU1 )
  896:             ELSE
  897:                CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
  898:      $                     WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
  899:      $                     U1(IMIN,1), LDU1 )
  900:             END IF
  901:          END IF
  902:          IF( WANTU2 ) THEN
  903:             IF( COLMAJOR ) THEN
  904:                CALL DLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
  905:      $                     WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
  906:      $                     U2(1,IMIN), LDU2 )
  907:             ELSE
  908:                CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
  909:      $                     WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
  910:      $                     U2(IMIN,1), LDU2 )
  911:             END IF
  912:          END IF
  913:          IF( WANTV1T ) THEN
  914:             IF( COLMAJOR ) THEN
  915:                CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
  916:      $                     WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
  917:      $                     V1T(IMIN,1), LDV1T )
  918:             ELSE
  919:                CALL DLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
  920:      $                     WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
  921:      $                     V1T(1,IMIN), LDV1T )
  922:             END IF
  923:          END IF
  924:          IF( WANTV2T ) THEN
  925:             IF( COLMAJOR ) THEN
  926:                CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
  927:      $                     WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
  928:      $                     V2T(IMIN,1), LDV2T )
  929:             ELSE
  930:                CALL DLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
  931:      $                     WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
  932:      $                     V2T(1,IMIN), LDV2T )
  933:             END IF
  934:          END IF
  935: *
  936: *        Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
  937: *
  938:          IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
  939:             B11D(IMAX) = -B11D(IMAX)
  940:             B21D(IMAX) = -B21D(IMAX)
  941:             IF( WANTV1T ) THEN
  942:                IF( COLMAJOR ) THEN
  943:                   CALL DSCAL( Q, NEGONE, V1T(IMAX,1), LDV1T )
  944:                ELSE
  945:                   CALL DSCAL( Q, NEGONE, V1T(1,IMAX), 1 )
  946:                END IF
  947:             END IF
  948:          END IF
  949: *
  950: *        Compute THETA(IMAX)
  951: *
  952:          X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
  953:      $        SIN(PHI(IMAX-1))*B12E(IMAX-1)
  954:          Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
  955:      $        SIN(PHI(IMAX-1))*B22E(IMAX-1)
  956: *
  957:          THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
  958: *
  959: *        Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
  960: *        and B22(IMAX,IMAX-1)
  961: *
  962:          IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
  963:             B12D(IMAX) = -B12D(IMAX)
  964:             IF( WANTU1 ) THEN
  965:                IF( COLMAJOR ) THEN
  966:                   CALL DSCAL( P, NEGONE, U1(1,IMAX), 1 )
  967:                ELSE
  968:                   CALL DSCAL( P, NEGONE, U1(IMAX,1), LDU1 )
  969:                END IF
  970:             END IF
  971:          END IF
  972:          IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
  973:             B22D(IMAX) = -B22D(IMAX)
  974:             IF( WANTU2 ) THEN
  975:                IF( COLMAJOR ) THEN
  976:                   CALL DSCAL( M-P, NEGONE, U2(1,IMAX), 1 )
  977:                ELSE
  978:                   CALL DSCAL( M-P, NEGONE, U2(IMAX,1), LDU2 )
  979:                END IF
  980:             END IF
  981:          END IF
  982: *
  983: *        Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
  984: *
  985:          IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
  986:             IF( WANTV2T ) THEN
  987:                IF( COLMAJOR ) THEN
  988:                   CALL DSCAL( M-Q, NEGONE, V2T(IMAX,1), LDV2T )
  989:                ELSE
  990:                   CALL DSCAL( M-Q, NEGONE, V2T(1,IMAX), 1 )
  991:                END IF
  992:             END IF
  993:          END IF
  994: *
  995: *        Test for negligible sines or cosines
  996: *
  997:          DO I = IMIN, IMAX
  998:             IF( THETA(I) .LT. THRESH ) THEN
  999:                THETA(I) = ZERO
 1000:             ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
 1001:                THETA(I) = PIOVER2
 1002:             END IF
 1003:          END DO
 1004:          DO I = IMIN, IMAX-1
 1005:             IF( PHI(I) .LT. THRESH ) THEN
 1006:                PHI(I) = ZERO
 1007:             ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
 1008:                PHI(I) = PIOVER2
 1009:             END IF
 1010:          END DO
 1011: *
 1012: *        Deflate
 1013: *
 1014:          IF (IMAX .GT. 1) THEN
 1015:             DO WHILE( PHI(IMAX-1) .EQ. ZERO )
 1016:                IMAX = IMAX - 1
 1017:                IF (IMAX .LE. 1) EXIT
 1018:             END DO
 1019:          END IF
 1020:          IF( IMIN .GT. IMAX - 1 )
 1021:      $      IMIN = IMAX - 1
 1022:          IF (IMIN .GT. 1) THEN
 1023:             DO WHILE (PHI(IMIN-1) .NE. ZERO)
 1024:                 IMIN = IMIN - 1
 1025:                 IF (IMIN .LE. 1) EXIT
 1026:             END DO
 1027:          END IF
 1028: *
 1029: *        Repeat main iteration loop
 1030: *
 1031:       END DO
 1032: *
 1033: *     Postprocessing: order THETA from least to greatest
 1034: *
 1035:       DO I = 1, Q
 1036: *
 1037:          MINI = I
 1038:          THETAMIN = THETA(I)
 1039:          DO J = I+1, Q
 1040:             IF( THETA(J) .LT. THETAMIN ) THEN
 1041:                MINI = J
 1042:                THETAMIN = THETA(J)
 1043:             END IF
 1044:          END DO
 1045: *
 1046:          IF( MINI .NE. I ) THEN
 1047:             THETA(MINI) = THETA(I)
 1048:             THETA(I) = THETAMIN
 1049:             IF( COLMAJOR ) THEN
 1050:                IF( WANTU1 )
 1051:      $            CALL DSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
 1052:                IF( WANTU2 )
 1053:      $            CALL DSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
 1054:                IF( WANTV1T )
 1055:      $            CALL DSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
 1056:                IF( WANTV2T )
 1057:      $            CALL DSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
 1058:      $               LDV2T )
 1059:             ELSE
 1060:                IF( WANTU1 )
 1061:      $            CALL DSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
 1062:                IF( WANTU2 )
 1063:      $            CALL DSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
 1064:                IF( WANTV1T )
 1065:      $            CALL DSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
 1066:                IF( WANTV2T )
 1067:      $            CALL DSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
 1068:             END IF
 1069:          END IF
 1070: *
 1071:       END DO
 1072: *
 1073:       RETURN
 1074: *
 1075: *     End of DBBCSD
 1076: *
 1077:       END
 1078: 

CVSweb interface <joel.bertrand@systella.fr>