File:  [local] / rpl / lapack / blas / ztrsv.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:46 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZTRSV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE ZTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
   12: *
   13: *       .. Scalar Arguments ..
   14: *       INTEGER INCX,LDA,N
   15: *       CHARACTER DIAG,TRANS,UPLO
   16: *       ..
   17: *       .. Array Arguments ..
   18: *       COMPLEX*16 A(LDA,*),X(*)
   19: *       ..
   20: *
   21: *
   22: *> \par Purpose:
   23: *  =============
   24: *>
   25: *> \verbatim
   26: *>
   27: *> ZTRSV  solves one of the systems of equations
   28: *>
   29: *>    A*x = b,   or   A**T*x = b,   or   A**H*x = b,
   30: *>
   31: *> where b and x are n element vectors and A is an n by n unit, or
   32: *> non-unit, upper or lower triangular matrix.
   33: *>
   34: *> No test for singularity or near-singularity is included in this
   35: *> routine. Such tests must be performed before calling this routine.
   36: *> \endverbatim
   37: *
   38: *  Arguments:
   39: *  ==========
   40: *
   41: *> \param[in] UPLO
   42: *> \verbatim
   43: *>          UPLO is CHARACTER*1
   44: *>           On entry, UPLO specifies whether the matrix is an upper or
   45: *>           lower triangular matrix as follows:
   46: *>
   47: *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   48: *>
   49: *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] TRANS
   53: *> \verbatim
   54: *>          TRANS is CHARACTER*1
   55: *>           On entry, TRANS specifies the equations to be solved as
   56: *>           follows:
   57: *>
   58: *>              TRANS = 'N' or 'n'   A*x = b.
   59: *>
   60: *>              TRANS = 'T' or 't'   A**T*x = b.
   61: *>
   62: *>              TRANS = 'C' or 'c'   A**H*x = b.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] DIAG
   66: *> \verbatim
   67: *>          DIAG is CHARACTER*1
   68: *>           On entry, DIAG specifies whether or not A is unit
   69: *>           triangular as follows:
   70: *>
   71: *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   72: *>
   73: *>              DIAG = 'N' or 'n'   A is not assumed to be unit
   74: *>                                  triangular.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] N
   78: *> \verbatim
   79: *>          N is INTEGER
   80: *>           On entry, N specifies the order of the matrix A.
   81: *>           N must be at least zero.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] A
   85: *> \verbatim
   86: *>          A is COMPLEX*16 array, dimension ( LDA, N )
   87: *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
   88: *>           upper triangular part of the array A must contain the upper
   89: *>           triangular matrix and the strictly lower triangular part of
   90: *>           A is not referenced.
   91: *>           Before entry with UPLO = 'L' or 'l', the leading n by n
   92: *>           lower triangular part of the array A must contain the lower
   93: *>           triangular matrix and the strictly upper triangular part of
   94: *>           A is not referenced.
   95: *>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
   96: *>           A are not referenced either, but are assumed to be unity.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDA
  100: *> \verbatim
  101: *>          LDA is INTEGER
  102: *>           On entry, LDA specifies the first dimension of A as declared
  103: *>           in the calling (sub) program. LDA must be at least
  104: *>           max( 1, n ).
  105: *> \endverbatim
  106: *>
  107: *> \param[in,out] X
  108: *> \verbatim
  109: *>          X is COMPLEX*16 array, dimension at least
  110: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
  111: *>           Before entry, the incremented array X must contain the n
  112: *>           element right-hand side vector b. On exit, X is overwritten
  113: *>           with the solution vector x.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] INCX
  117: *> \verbatim
  118: *>          INCX is INTEGER
  119: *>           On entry, INCX specifies the increment for the elements of
  120: *>           X. INCX must not be zero.
  121: *> \endverbatim
  122: *
  123: *  Authors:
  124: *  ========
  125: *
  126: *> \author Univ. of Tennessee
  127: *> \author Univ. of California Berkeley
  128: *> \author Univ. of Colorado Denver
  129: *> \author NAG Ltd.
  130: *
  131: *> \ingroup complex16_blas_level2
  132: *
  133: *> \par Further Details:
  134: *  =====================
  135: *>
  136: *> \verbatim
  137: *>
  138: *>  Level 2 Blas routine.
  139: *>
  140: *>  -- Written on 22-October-1986.
  141: *>     Jack Dongarra, Argonne National Lab.
  142: *>     Jeremy Du Croz, Nag Central Office.
  143: *>     Sven Hammarling, Nag Central Office.
  144: *>     Richard Hanson, Sandia National Labs.
  145: *> \endverbatim
  146: *>
  147: *  =====================================================================
  148:       SUBROUTINE ZTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  149: *
  150: *  -- Reference BLAS level2 routine --
  151: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  152: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  153: *
  154: *     .. Scalar Arguments ..
  155:       INTEGER INCX,LDA,N
  156:       CHARACTER DIAG,TRANS,UPLO
  157: *     ..
  158: *     .. Array Arguments ..
  159:       COMPLEX*16 A(LDA,*),X(*)
  160: *     ..
  161: *
  162: *  =====================================================================
  163: *
  164: *     .. Parameters ..
  165:       COMPLEX*16 ZERO
  166:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  167: *     ..
  168: *     .. Local Scalars ..
  169:       COMPLEX*16 TEMP
  170:       INTEGER I,INFO,IX,J,JX,KX
  171:       LOGICAL NOCONJ,NOUNIT
  172: *     ..
  173: *     .. External Functions ..
  174:       LOGICAL LSAME
  175:       EXTERNAL LSAME
  176: *     ..
  177: *     .. External Subroutines ..
  178:       EXTERNAL XERBLA
  179: *     ..
  180: *     .. Intrinsic Functions ..
  181:       INTRINSIC DCONJG,MAX
  182: *     ..
  183: *
  184: *     Test the input parameters.
  185: *
  186:       INFO = 0
  187:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  188:           INFO = 1
  189:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  190:      +         .NOT.LSAME(TRANS,'C')) THEN
  191:           INFO = 2
  192:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  193:           INFO = 3
  194:       ELSE IF (N.LT.0) THEN
  195:           INFO = 4
  196:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  197:           INFO = 6
  198:       ELSE IF (INCX.EQ.0) THEN
  199:           INFO = 8
  200:       END IF
  201:       IF (INFO.NE.0) THEN
  202:           CALL XERBLA('ZTRSV ',INFO)
  203:           RETURN
  204:       END IF
  205: *
  206: *     Quick return if possible.
  207: *
  208:       IF (N.EQ.0) RETURN
  209: *
  210:       NOCONJ = LSAME(TRANS,'T')
  211:       NOUNIT = LSAME(DIAG,'N')
  212: *
  213: *     Set up the start point in X if the increment is not unity. This
  214: *     will be  ( N - 1 )*INCX  too small for descending loops.
  215: *
  216:       IF (INCX.LE.0) THEN
  217:           KX = 1 - (N-1)*INCX
  218:       ELSE IF (INCX.NE.1) THEN
  219:           KX = 1
  220:       END IF
  221: *
  222: *     Start the operations. In this version the elements of A are
  223: *     accessed sequentially with one pass through A.
  224: *
  225:       IF (LSAME(TRANS,'N')) THEN
  226: *
  227: *        Form  x := inv( A )*x.
  228: *
  229:           IF (LSAME(UPLO,'U')) THEN
  230:               IF (INCX.EQ.1) THEN
  231:                   DO 20 J = N,1,-1
  232:                       IF (X(J).NE.ZERO) THEN
  233:                           IF (NOUNIT) X(J) = X(J)/A(J,J)
  234:                           TEMP = X(J)
  235:                           DO 10 I = J - 1,1,-1
  236:                               X(I) = X(I) - TEMP*A(I,J)
  237:    10                     CONTINUE
  238:                       END IF
  239:    20             CONTINUE
  240:               ELSE
  241:                   JX = KX + (N-1)*INCX
  242:                   DO 40 J = N,1,-1
  243:                       IF (X(JX).NE.ZERO) THEN
  244:                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
  245:                           TEMP = X(JX)
  246:                           IX = JX
  247:                           DO 30 I = J - 1,1,-1
  248:                               IX = IX - INCX
  249:                               X(IX) = X(IX) - TEMP*A(I,J)
  250:    30                     CONTINUE
  251:                       END IF
  252:                       JX = JX - INCX
  253:    40             CONTINUE
  254:               END IF
  255:           ELSE
  256:               IF (INCX.EQ.1) THEN
  257:                   DO 60 J = 1,N
  258:                       IF (X(J).NE.ZERO) THEN
  259:                           IF (NOUNIT) X(J) = X(J)/A(J,J)
  260:                           TEMP = X(J)
  261:                           DO 50 I = J + 1,N
  262:                               X(I) = X(I) - TEMP*A(I,J)
  263:    50                     CONTINUE
  264:                       END IF
  265:    60             CONTINUE
  266:               ELSE
  267:                   JX = KX
  268:                   DO 80 J = 1,N
  269:                       IF (X(JX).NE.ZERO) THEN
  270:                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
  271:                           TEMP = X(JX)
  272:                           IX = JX
  273:                           DO 70 I = J + 1,N
  274:                               IX = IX + INCX
  275:                               X(IX) = X(IX) - TEMP*A(I,J)
  276:    70                     CONTINUE
  277:                       END IF
  278:                       JX = JX + INCX
  279:    80             CONTINUE
  280:               END IF
  281:           END IF
  282:       ELSE
  283: *
  284: *        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
  285: *
  286:           IF (LSAME(UPLO,'U')) THEN
  287:               IF (INCX.EQ.1) THEN
  288:                   DO 110 J = 1,N
  289:                       TEMP = X(J)
  290:                       IF (NOCONJ) THEN
  291:                           DO 90 I = 1,J - 1
  292:                               TEMP = TEMP - A(I,J)*X(I)
  293:    90                     CONTINUE
  294:                           IF (NOUNIT) TEMP = TEMP/A(J,J)
  295:                       ELSE
  296:                           DO 100 I = 1,J - 1
  297:                               TEMP = TEMP - DCONJG(A(I,J))*X(I)
  298:   100                     CONTINUE
  299:                           IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J))
  300:                       END IF
  301:                       X(J) = TEMP
  302:   110             CONTINUE
  303:               ELSE
  304:                   JX = KX
  305:                   DO 140 J = 1,N
  306:                       IX = KX
  307:                       TEMP = X(JX)
  308:                       IF (NOCONJ) THEN
  309:                           DO 120 I = 1,J - 1
  310:                               TEMP = TEMP - A(I,J)*X(IX)
  311:                               IX = IX + INCX
  312:   120                     CONTINUE
  313:                           IF (NOUNIT) TEMP = TEMP/A(J,J)
  314:                       ELSE
  315:                           DO 130 I = 1,J - 1
  316:                               TEMP = TEMP - DCONJG(A(I,J))*X(IX)
  317:                               IX = IX + INCX
  318:   130                     CONTINUE
  319:                           IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J))
  320:                       END IF
  321:                       X(JX) = TEMP
  322:                       JX = JX + INCX
  323:   140             CONTINUE
  324:               END IF
  325:           ELSE
  326:               IF (INCX.EQ.1) THEN
  327:                   DO 170 J = N,1,-1
  328:                       TEMP = X(J)
  329:                       IF (NOCONJ) THEN
  330:                           DO 150 I = N,J + 1,-1
  331:                               TEMP = TEMP - A(I,J)*X(I)
  332:   150                     CONTINUE
  333:                           IF (NOUNIT) TEMP = TEMP/A(J,J)
  334:                       ELSE
  335:                           DO 160 I = N,J + 1,-1
  336:                               TEMP = TEMP - DCONJG(A(I,J))*X(I)
  337:   160                     CONTINUE
  338:                           IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J))
  339:                       END IF
  340:                       X(J) = TEMP
  341:   170             CONTINUE
  342:               ELSE
  343:                   KX = KX + (N-1)*INCX
  344:                   JX = KX
  345:                   DO 200 J = N,1,-1
  346:                       IX = KX
  347:                       TEMP = X(JX)
  348:                       IF (NOCONJ) THEN
  349:                           DO 180 I = N,J + 1,-1
  350:                               TEMP = TEMP - A(I,J)*X(IX)
  351:                               IX = IX - INCX
  352:   180                     CONTINUE
  353:                           IF (NOUNIT) TEMP = TEMP/A(J,J)
  354:                       ELSE
  355:                           DO 190 I = N,J + 1,-1
  356:                               TEMP = TEMP - DCONJG(A(I,J))*X(IX)
  357:                               IX = IX - INCX
  358:   190                     CONTINUE
  359:                           IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J))
  360:                       END IF
  361:                       X(JX) = TEMP
  362:                       JX = JX - INCX
  363:   200             CONTINUE
  364:               END IF
  365:           END IF
  366:       END IF
  367: *
  368:       RETURN
  369: *
  370: *     End of ZTRSV
  371: *
  372:       END

CVSweb interface <joel.bertrand@systella.fr>