version 1.6, 2010/12/21 13:51:27
|
version 1.15, 2018/05/29 07:19:43
|
Line 1
|
Line 1
|
SUBROUTINE ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) |
*> \brief \b ZTRSM |
* .. Scalar Arguments .. |
|
DOUBLE COMPLEX ALPHA |
|
INTEGER LDA,LDB,M,N |
|
CHARACTER DIAG,SIDE,TRANSA,UPLO |
|
* .. |
|
* .. Array Arguments .. |
|
DOUBLE COMPLEX A(LDA,*),B(LDB,*) |
|
* .. |
|
* |
|
* Purpose |
|
* ======= |
|
* |
|
* ZTRSM solves one of the matrix equations |
|
* |
* |
* op( A )*X = alpha*B, or X*op( A ) = alpha*B, |
* =========== DOCUMENTATION =========== |
* |
* |
* where alpha is a scalar, X and B are m by n matrices, A is a unit, or |
* Online html documentation available at |
* non-unit, upper or lower triangular matrix and op( A ) is one of |
* http://www.netlib.org/lapack/explore-html/ |
* |
* |
* op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). |
* Definition: |
|
* =========== |
|
* |
|
* SUBROUTINE ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) |
|
* |
|
* .. Scalar Arguments .. |
|
* COMPLEX*16 ALPHA |
|
* INTEGER LDA,LDB,M,N |
|
* CHARACTER DIAG,SIDE,TRANSA,UPLO |
|
* .. |
|
* .. Array Arguments .. |
|
* COMPLEX*16 A(LDA,*),B(LDB,*) |
|
* .. |
|
* |
|
* |
|
*> \par Purpose: |
|
* ============= |
|
*> |
|
*> \verbatim |
|
*> |
|
*> ZTRSM solves one of the matrix equations |
|
*> |
|
*> op( A )*X = alpha*B, or X*op( A ) = alpha*B, |
|
*> |
|
*> where alpha is a scalar, X and B are m by n matrices, A is a unit, or |
|
*> non-unit, upper or lower triangular matrix and op( A ) is one of |
|
*> |
|
*> op( A ) = A or op( A ) = A**T or op( A ) = A**H. |
|
*> |
|
*> The matrix X is overwritten on B. |
|
*> \endverbatim |
* |
* |
* The matrix X is overwritten on B. |
* Arguments: |
* |
|
* Arguments |
|
* ========== |
* ========== |
* |
* |
* SIDE - CHARACTER*1. |
*> \param[in] SIDE |
* On entry, SIDE specifies whether op( A ) appears on the left |
*> \verbatim |
* or right of X as follows: |
*> SIDE is CHARACTER*1 |
* |
*> On entry, SIDE specifies whether op( A ) appears on the left |
* SIDE = 'L' or 'l' op( A )*X = alpha*B. |
*> or right of X as follows: |
* |
*> |
* SIDE = 'R' or 'r' X*op( A ) = alpha*B. |
*> SIDE = 'L' or 'l' op( A )*X = alpha*B. |
* |
*> |
* Unchanged on exit. |
*> SIDE = 'R' or 'r' X*op( A ) = alpha*B. |
* |
*> \endverbatim |
* UPLO - CHARACTER*1. |
*> |
* On entry, UPLO specifies whether the matrix A is an upper or |
*> \param[in] UPLO |
* lower triangular matrix as follows: |
*> \verbatim |
* |
*> UPLO is CHARACTER*1 |
* UPLO = 'U' or 'u' A is an upper triangular matrix. |
*> On entry, UPLO specifies whether the matrix A is an upper or |
* |
*> lower triangular matrix as follows: |
* UPLO = 'L' or 'l' A is a lower triangular matrix. |
*> |
* |
*> UPLO = 'U' or 'u' A is an upper triangular matrix. |
* Unchanged on exit. |
*> |
* |
*> UPLO = 'L' or 'l' A is a lower triangular matrix. |
* TRANSA - CHARACTER*1. |
*> \endverbatim |
* On entry, TRANSA specifies the form of op( A ) to be used in |
*> |
* the matrix multiplication as follows: |
*> \param[in] TRANSA |
* |
*> \verbatim |
* TRANSA = 'N' or 'n' op( A ) = A. |
*> TRANSA is CHARACTER*1 |
* |
*> On entry, TRANSA specifies the form of op( A ) to be used in |
* TRANSA = 'T' or 't' op( A ) = A'. |
*> the matrix multiplication as follows: |
* |
*> |
* TRANSA = 'C' or 'c' op( A ) = conjg( A' ). |
*> TRANSA = 'N' or 'n' op( A ) = A. |
* |
*> |
* Unchanged on exit. |
*> TRANSA = 'T' or 't' op( A ) = A**T. |
* |
*> |
* DIAG - CHARACTER*1. |
*> TRANSA = 'C' or 'c' op( A ) = A**H. |
* On entry, DIAG specifies whether or not A is unit triangular |
*> \endverbatim |
* as follows: |
*> |
* |
*> \param[in] DIAG |
* DIAG = 'U' or 'u' A is assumed to be unit triangular. |
*> \verbatim |
* |
*> DIAG is CHARACTER*1 |
* DIAG = 'N' or 'n' A is not assumed to be unit |
*> On entry, DIAG specifies whether or not A is unit triangular |
* triangular. |
*> as follows: |
* |
*> |
* Unchanged on exit. |
*> DIAG = 'U' or 'u' A is assumed to be unit triangular. |
* |
*> |
* M - INTEGER. |
*> DIAG = 'N' or 'n' A is not assumed to be unit |
* On entry, M specifies the number of rows of B. M must be at |
*> triangular. |
* least zero. |
*> \endverbatim |
* Unchanged on exit. |
*> |
* |
*> \param[in] M |
* N - INTEGER. |
*> \verbatim |
* On entry, N specifies the number of columns of B. N must be |
*> M is INTEGER |
* at least zero. |
*> On entry, M specifies the number of rows of B. M must be at |
* Unchanged on exit. |
*> least zero. |
* |
*> \endverbatim |
* ALPHA - COMPLEX*16 . |
*> |
* On entry, ALPHA specifies the scalar alpha. When alpha is |
*> \param[in] N |
* zero then A is not referenced and B need not be set before |
*> \verbatim |
* entry. |
*> N is INTEGER |
* Unchanged on exit. |
*> On entry, N specifies the number of columns of B. N must be |
* |
*> at least zero. |
* A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m |
*> \endverbatim |
* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. |
*> |
* Before entry with UPLO = 'U' or 'u', the leading k by k |
*> \param[in] ALPHA |
* upper triangular part of the array A must contain the upper |
*> \verbatim |
* triangular matrix and the strictly lower triangular part of |
*> ALPHA is COMPLEX*16 |
* A is not referenced. |
*> On entry, ALPHA specifies the scalar alpha. When alpha is |
* Before entry with UPLO = 'L' or 'l', the leading k by k |
*> zero then A is not referenced and B need not be set before |
* lower triangular part of the array A must contain the lower |
*> entry. |
* triangular matrix and the strictly upper triangular part of |
*> \endverbatim |
* A is not referenced. |
*> |
* Note that when DIAG = 'U' or 'u', the diagonal elements of |
*> \param[in] A |
* A are not referenced either, but are assumed to be unity. |
*> \verbatim |
* Unchanged on exit. |
*> A is COMPLEX*16 array, dimension ( LDA, k ), |
* |
*> where k is m when SIDE = 'L' or 'l' |
* LDA - INTEGER. |
*> and k is n when SIDE = 'R' or 'r'. |
* On entry, LDA specifies the first dimension of A as declared |
*> Before entry with UPLO = 'U' or 'u', the leading k by k |
* in the calling (sub) program. When SIDE = 'L' or 'l' then |
*> upper triangular part of the array A must contain the upper |
* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' |
*> triangular matrix and the strictly lower triangular part of |
* then LDA must be at least max( 1, n ). |
*> A is not referenced. |
* Unchanged on exit. |
*> Before entry with UPLO = 'L' or 'l', the leading k by k |
* |
*> lower triangular part of the array A must contain the lower |
* B - COMPLEX*16 array of DIMENSION ( LDB, n ). |
*> triangular matrix and the strictly upper triangular part of |
* Before entry, the leading m by n part of the array B must |
*> A is not referenced. |
* contain the right-hand side matrix B, and on exit is |
*> Note that when DIAG = 'U' or 'u', the diagonal elements of |
* overwritten by the solution matrix X. |
*> A are not referenced either, but are assumed to be unity. |
* |
*> \endverbatim |
* LDB - INTEGER. |
*> |
* On entry, LDB specifies the first dimension of B as declared |
*> \param[in] LDA |
* in the calling (sub) program. LDB must be at least |
*> \verbatim |
* max( 1, m ). |
*> LDA is INTEGER |
* Unchanged on exit. |
*> On entry, LDA specifies the first dimension of A as declared |
* |
*> in the calling (sub) program. When SIDE = 'L' or 'l' then |
* Further Details |
*> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' |
* =============== |
*> then LDA must be at least max( 1, n ). |
|
*> \endverbatim |
|
*> |
|
*> \param[in,out] B |
|
*> \verbatim |
|
*> B is COMPLEX*16 array, dimension ( LDB, N ) |
|
*> Before entry, the leading m by n part of the array B must |
|
*> contain the right-hand side matrix B, and on exit is |
|
*> overwritten by the solution matrix X. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDB |
|
*> \verbatim |
|
*> LDB is INTEGER |
|
*> On entry, LDB specifies the first dimension of B as declared |
|
*> in the calling (sub) program. LDB must be at least |
|
*> max( 1, m ). |
|
*> \endverbatim |
|
* |
|
* Authors: |
|
* ======== |
|
* |
|
*> \author Univ. of Tennessee |
|
*> \author Univ. of California Berkeley |
|
*> \author Univ. of Colorado Denver |
|
*> \author NAG Ltd. |
|
* |
|
*> \date December 2016 |
|
* |
|
*> \ingroup complex16_blas_level3 |
|
* |
|
*> \par Further Details: |
|
* ===================== |
|
*> |
|
*> \verbatim |
|
*> |
|
*> Level 3 Blas routine. |
|
*> |
|
*> -- Written on 8-February-1989. |
|
*> Jack Dongarra, Argonne National Laboratory. |
|
*> Iain Duff, AERE Harwell. |
|
*> Jeremy Du Croz, Numerical Algorithms Group Ltd. |
|
*> Sven Hammarling, Numerical Algorithms Group Ltd. |
|
*> \endverbatim |
|
*> |
|
* ===================================================================== |
|
SUBROUTINE ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) |
* |
* |
* Level 3 Blas routine. |
* -- Reference BLAS level3 routine (version 3.7.0) -- |
|
* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- |
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
|
* December 2016 |
* |
* |
* -- Written on 8-February-1989. |
* .. Scalar Arguments .. |
* Jack Dongarra, Argonne National Laboratory. |
COMPLEX*16 ALPHA |
* Iain Duff, AERE Harwell. |
INTEGER LDA,LDB,M,N |
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
CHARACTER DIAG,SIDE,TRANSA,UPLO |
* Sven Hammarling, Numerical Algorithms Group Ltd. |
* .. |
|
* .. Array Arguments .. |
|
COMPLEX*16 A(LDA,*),B(LDB,*) |
|
* .. |
* |
* |
* ===================================================================== |
* ===================================================================== |
* |
* |
Line 140
|
Line 207
|
INTRINSIC DCONJG,MAX |
INTRINSIC DCONJG,MAX |
* .. |
* .. |
* .. Local Scalars .. |
* .. Local Scalars .. |
DOUBLE COMPLEX TEMP |
COMPLEX*16 TEMP |
INTEGER I,INFO,J,K,NROWA |
INTEGER I,INFO,J,K,NROWA |
LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER |
LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER |
* .. |
* .. |
* .. Parameters .. |
* .. Parameters .. |
DOUBLE COMPLEX ONE |
COMPLEX*16 ONE |
PARAMETER (ONE= (1.0D+0,0.0D+0)) |
PARAMETER (ONE= (1.0D+0,0.0D+0)) |
DOUBLE COMPLEX ZERO |
COMPLEX*16 ZERO |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
* .. |
* .. |
* |
* |
Line 245
|
Line 312
|
END IF |
END IF |
ELSE |
ELSE |
* |
* |
* Form B := alpha*inv( A' )*B |
* Form B := alpha*inv( A**T )*B |
* or B := alpha*inv( conjg( A' ) )*B. |
* or B := alpha*inv( A**H )*B. |
* |
* |
IF (UPPER) THEN |
IF (UPPER) THEN |
DO 140 J = 1,N |
DO 140 J = 1,N |
Line 336
|
Line 403
|
END IF |
END IF |
ELSE |
ELSE |
* |
* |
* Form B := alpha*B*inv( A' ) |
* Form B := alpha*B*inv( A**T ) |
* or B := alpha*B*inv( conjg( A' ) ). |
* or B := alpha*B*inv( A**H ). |
* |
* |
IF (UPPER) THEN |
IF (UPPER) THEN |
DO 330 K = N,1,-1 |
DO 330 K = N,1,-1 |