File:  [local] / rpl / lapack / blas / ztrmv.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:51:27 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0

    1:       SUBROUTINE ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
    2: *     .. Scalar Arguments ..
    3:       INTEGER INCX,LDA,N
    4:       CHARACTER DIAG,TRANS,UPLO
    5: *     ..
    6: *     .. Array Arguments ..
    7:       DOUBLE COMPLEX A(LDA,*),X(*)
    8: *     ..
    9: *
   10: *  Purpose
   11: *  =======
   12: *
   13: *  ZTRMV  performs one of the matrix-vector operations
   14: *
   15: *     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
   16: *
   17: *  where x is an n element vector and  A is an n by n unit, or non-unit,
   18: *  upper or lower triangular matrix.
   19: *
   20: *  Arguments
   21: *  ==========
   22: *
   23: *  UPLO   - CHARACTER*1.
   24: *           On entry, UPLO specifies whether the matrix is an upper or
   25: *           lower triangular matrix as follows:
   26: *
   27: *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   28: *
   29: *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   30: *
   31: *           Unchanged on exit.
   32: *
   33: *  TRANS  - CHARACTER*1.
   34: *           On entry, TRANS specifies the operation to be performed as
   35: *           follows:
   36: *
   37: *              TRANS = 'N' or 'n'   x := A*x.
   38: *
   39: *              TRANS = 'T' or 't'   x := A'*x.
   40: *
   41: *              TRANS = 'C' or 'c'   x := conjg( A' )*x.
   42: *
   43: *           Unchanged on exit.
   44: *
   45: *  DIAG   - CHARACTER*1.
   46: *           On entry, DIAG specifies whether or not A is unit
   47: *           triangular as follows:
   48: *
   49: *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   50: *
   51: *              DIAG = 'N' or 'n'   A is not assumed to be unit
   52: *                                  triangular.
   53: *
   54: *           Unchanged on exit.
   55: *
   56: *  N      - INTEGER.
   57: *           On entry, N specifies the order of the matrix A.
   58: *           N must be at least zero.
   59: *           Unchanged on exit.
   60: *
   61: *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
   62: *           Before entry with  UPLO = 'U' or 'u', the leading n by n
   63: *           upper triangular part of the array A must contain the upper
   64: *           triangular matrix and the strictly lower triangular part of
   65: *           A is not referenced.
   66: *           Before entry with UPLO = 'L' or 'l', the leading n by n
   67: *           lower triangular part of the array A must contain the lower
   68: *           triangular matrix and the strictly upper triangular part of
   69: *           A is not referenced.
   70: *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
   71: *           A are not referenced either, but are assumed to be unity.
   72: *           Unchanged on exit.
   73: *
   74: *  LDA    - INTEGER.
   75: *           On entry, LDA specifies the first dimension of A as declared
   76: *           in the calling (sub) program. LDA must be at least
   77: *           max( 1, n ).
   78: *           Unchanged on exit.
   79: *
   80: *  X      - COMPLEX*16       array of dimension at least
   81: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   82: *           Before entry, the incremented array X must contain the n
   83: *           element vector x. On exit, X is overwritten with the
   84: *           tranformed vector x.
   85: *
   86: *  INCX   - INTEGER.
   87: *           On entry, INCX specifies the increment for the elements of
   88: *           X. INCX must not be zero.
   89: *           Unchanged on exit.
   90: *
   91: *  Further Details
   92: *  ===============
   93: *
   94: *  Level 2 Blas routine.
   95: *
   96: *  -- Written on 22-October-1986.
   97: *     Jack Dongarra, Argonne National Lab.
   98: *     Jeremy Du Croz, Nag Central Office.
   99: *     Sven Hammarling, Nag Central Office.
  100: *     Richard Hanson, Sandia National Labs.
  101: *
  102: *  =====================================================================
  103: *
  104: *     .. Parameters ..
  105:       DOUBLE COMPLEX ZERO
  106:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  107: *     ..
  108: *     .. Local Scalars ..
  109:       DOUBLE COMPLEX TEMP
  110:       INTEGER I,INFO,IX,J,JX,KX
  111:       LOGICAL NOCONJ,NOUNIT
  112: *     ..
  113: *     .. External Functions ..
  114:       LOGICAL LSAME
  115:       EXTERNAL LSAME
  116: *     ..
  117: *     .. External Subroutines ..
  118:       EXTERNAL XERBLA
  119: *     ..
  120: *     .. Intrinsic Functions ..
  121:       INTRINSIC DCONJG,MAX
  122: *     ..
  123: *
  124: *     Test the input parameters.
  125: *
  126:       INFO = 0
  127:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  128:           INFO = 1
  129:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  130:      +         .NOT.LSAME(TRANS,'C')) THEN
  131:           INFO = 2
  132:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  133:           INFO = 3
  134:       ELSE IF (N.LT.0) THEN
  135:           INFO = 4
  136:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  137:           INFO = 6
  138:       ELSE IF (INCX.EQ.0) THEN
  139:           INFO = 8
  140:       END IF
  141:       IF (INFO.NE.0) THEN
  142:           CALL XERBLA('ZTRMV ',INFO)
  143:           RETURN
  144:       END IF
  145: *
  146: *     Quick return if possible.
  147: *
  148:       IF (N.EQ.0) RETURN
  149: *
  150:       NOCONJ = LSAME(TRANS,'T')
  151:       NOUNIT = LSAME(DIAG,'N')
  152: *
  153: *     Set up the start point in X if the increment is not unity. This
  154: *     will be  ( N - 1 )*INCX  too small for descending loops.
  155: *
  156:       IF (INCX.LE.0) THEN
  157:           KX = 1 - (N-1)*INCX
  158:       ELSE IF (INCX.NE.1) THEN
  159:           KX = 1
  160:       END IF
  161: *
  162: *     Start the operations. In this version the elements of A are
  163: *     accessed sequentially with one pass through A.
  164: *
  165:       IF (LSAME(TRANS,'N')) THEN
  166: *
  167: *        Form  x := A*x.
  168: *
  169:           IF (LSAME(UPLO,'U')) THEN
  170:               IF (INCX.EQ.1) THEN
  171:                   DO 20 J = 1,N
  172:                       IF (X(J).NE.ZERO) THEN
  173:                           TEMP = X(J)
  174:                           DO 10 I = 1,J - 1
  175:                               X(I) = X(I) + TEMP*A(I,J)
  176:    10                     CONTINUE
  177:                           IF (NOUNIT) X(J) = X(J)*A(J,J)
  178:                       END IF
  179:    20             CONTINUE
  180:               ELSE
  181:                   JX = KX
  182:                   DO 40 J = 1,N
  183:                       IF (X(JX).NE.ZERO) THEN
  184:                           TEMP = X(JX)
  185:                           IX = KX
  186:                           DO 30 I = 1,J - 1
  187:                               X(IX) = X(IX) + TEMP*A(I,J)
  188:                               IX = IX + INCX
  189:    30                     CONTINUE
  190:                           IF (NOUNIT) X(JX) = X(JX)*A(J,J)
  191:                       END IF
  192:                       JX = JX + INCX
  193:    40             CONTINUE
  194:               END IF
  195:           ELSE
  196:               IF (INCX.EQ.1) THEN
  197:                   DO 60 J = N,1,-1
  198:                       IF (X(J).NE.ZERO) THEN
  199:                           TEMP = X(J)
  200:                           DO 50 I = N,J + 1,-1
  201:                               X(I) = X(I) + TEMP*A(I,J)
  202:    50                     CONTINUE
  203:                           IF (NOUNIT) X(J) = X(J)*A(J,J)
  204:                       END IF
  205:    60             CONTINUE
  206:               ELSE
  207:                   KX = KX + (N-1)*INCX
  208:                   JX = KX
  209:                   DO 80 J = N,1,-1
  210:                       IF (X(JX).NE.ZERO) THEN
  211:                           TEMP = X(JX)
  212:                           IX = KX
  213:                           DO 70 I = N,J + 1,-1
  214:                               X(IX) = X(IX) + TEMP*A(I,J)
  215:                               IX = IX - INCX
  216:    70                     CONTINUE
  217:                           IF (NOUNIT) X(JX) = X(JX)*A(J,J)
  218:                       END IF
  219:                       JX = JX - INCX
  220:    80             CONTINUE
  221:               END IF
  222:           END IF
  223:       ELSE
  224: *
  225: *        Form  x := A'*x  or  x := conjg( A' )*x.
  226: *
  227:           IF (LSAME(UPLO,'U')) THEN
  228:               IF (INCX.EQ.1) THEN
  229:                   DO 110 J = N,1,-1
  230:                       TEMP = X(J)
  231:                       IF (NOCONJ) THEN
  232:                           IF (NOUNIT) TEMP = TEMP*A(J,J)
  233:                           DO 90 I = J - 1,1,-1
  234:                               TEMP = TEMP + A(I,J)*X(I)
  235:    90                     CONTINUE
  236:                       ELSE
  237:                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
  238:                           DO 100 I = J - 1,1,-1
  239:                               TEMP = TEMP + DCONJG(A(I,J))*X(I)
  240:   100                     CONTINUE
  241:                       END IF
  242:                       X(J) = TEMP
  243:   110             CONTINUE
  244:               ELSE
  245:                   JX = KX + (N-1)*INCX
  246:                   DO 140 J = N,1,-1
  247:                       TEMP = X(JX)
  248:                       IX = JX
  249:                       IF (NOCONJ) THEN
  250:                           IF (NOUNIT) TEMP = TEMP*A(J,J)
  251:                           DO 120 I = J - 1,1,-1
  252:                               IX = IX - INCX
  253:                               TEMP = TEMP + A(I,J)*X(IX)
  254:   120                     CONTINUE
  255:                       ELSE
  256:                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
  257:                           DO 130 I = J - 1,1,-1
  258:                               IX = IX - INCX
  259:                               TEMP = TEMP + DCONJG(A(I,J))*X(IX)
  260:   130                     CONTINUE
  261:                       END IF
  262:                       X(JX) = TEMP
  263:                       JX = JX - INCX
  264:   140             CONTINUE
  265:               END IF
  266:           ELSE
  267:               IF (INCX.EQ.1) THEN
  268:                   DO 170 J = 1,N
  269:                       TEMP = X(J)
  270:                       IF (NOCONJ) THEN
  271:                           IF (NOUNIT) TEMP = TEMP*A(J,J)
  272:                           DO 150 I = J + 1,N
  273:                               TEMP = TEMP + A(I,J)*X(I)
  274:   150                     CONTINUE
  275:                       ELSE
  276:                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
  277:                           DO 160 I = J + 1,N
  278:                               TEMP = TEMP + DCONJG(A(I,J))*X(I)
  279:   160                     CONTINUE
  280:                       END IF
  281:                       X(J) = TEMP
  282:   170             CONTINUE
  283:               ELSE
  284:                   JX = KX
  285:                   DO 200 J = 1,N
  286:                       TEMP = X(JX)
  287:                       IX = JX
  288:                       IF (NOCONJ) THEN
  289:                           IF (NOUNIT) TEMP = TEMP*A(J,J)
  290:                           DO 180 I = J + 1,N
  291:                               IX = IX + INCX
  292:                               TEMP = TEMP + A(I,J)*X(IX)
  293:   180                     CONTINUE
  294:                       ELSE
  295:                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
  296:                           DO 190 I = J + 1,N
  297:                               IX = IX + INCX
  298:                               TEMP = TEMP + DCONJG(A(I,J))*X(IX)
  299:   190                     CONTINUE
  300:                       END IF
  301:                       X(JX) = TEMP
  302:                       JX = JX + INCX
  303:   200             CONTINUE
  304:               END IF
  305:           END IF
  306:       END IF
  307: *
  308:       RETURN
  309: *
  310: *     End of ZTRMV .
  311: *
  312:       END

CVSweb interface <joel.bertrand@systella.fr>