File:  [local] / rpl / lapack / blas / ztbmv.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:21 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
    2: *     .. Scalar Arguments ..
    3:       INTEGER INCX,K,LDA,N
    4:       CHARACTER DIAG,TRANS,UPLO
    5: *     ..
    6: *     .. Array Arguments ..
    7:       DOUBLE COMPLEX A(LDA,*),X(*)
    8: *     ..
    9: *
   10: *  Purpose
   11: *  =======
   12: *
   13: *  ZTBMV  performs one of the matrix-vector operations
   14: *
   15: *     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
   16: *
   17: *  where x is an n element vector and  A is an n by n unit, or non-unit,
   18: *  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
   19: *
   20: *  Arguments
   21: *  ==========
   22: *
   23: *  UPLO   - CHARACTER*1.
   24: *           On entry, UPLO specifies whether the matrix is an upper or
   25: *           lower triangular matrix as follows:
   26: *
   27: *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   28: *
   29: *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   30: *
   31: *           Unchanged on exit.
   32: *
   33: *  TRANS  - CHARACTER*1.
   34: *           On entry, TRANS specifies the operation to be performed as
   35: *           follows:
   36: *
   37: *              TRANS = 'N' or 'n'   x := A*x.
   38: *
   39: *              TRANS = 'T' or 't'   x := A'*x.
   40: *
   41: *              TRANS = 'C' or 'c'   x := conjg( A' )*x.
   42: *
   43: *           Unchanged on exit.
   44: *
   45: *  DIAG   - CHARACTER*1.
   46: *           On entry, DIAG specifies whether or not A is unit
   47: *           triangular as follows:
   48: *
   49: *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   50: *
   51: *              DIAG = 'N' or 'n'   A is not assumed to be unit
   52: *                                  triangular.
   53: *
   54: *           Unchanged on exit.
   55: *
   56: *  N      - INTEGER.
   57: *           On entry, N specifies the order of the matrix A.
   58: *           N must be at least zero.
   59: *           Unchanged on exit.
   60: *
   61: *  K      - INTEGER.
   62: *           On entry with UPLO = 'U' or 'u', K specifies the number of
   63: *           super-diagonals of the matrix A.
   64: *           On entry with UPLO = 'L' or 'l', K specifies the number of
   65: *           sub-diagonals of the matrix A.
   66: *           K must satisfy  0 .le. K.
   67: *           Unchanged on exit.
   68: *
   69: *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
   70: *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
   71: *           by n part of the array A must contain the upper triangular
   72: *           band part of the matrix of coefficients, supplied column by
   73: *           column, with the leading diagonal of the matrix in row
   74: *           ( k + 1 ) of the array, the first super-diagonal starting at
   75: *           position 2 in row k, and so on. The top left k by k triangle
   76: *           of the array A is not referenced.
   77: *           The following program segment will transfer an upper
   78: *           triangular band matrix from conventional full matrix storage
   79: *           to band storage:
   80: *
   81: *                 DO 20, J = 1, N
   82: *                    M = K + 1 - J
   83: *                    DO 10, I = MAX( 1, J - K ), J
   84: *                       A( M + I, J ) = matrix( I, J )
   85: *              10    CONTINUE
   86: *              20 CONTINUE
   87: *
   88: *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
   89: *           by n part of the array A must contain the lower triangular
   90: *           band part of the matrix of coefficients, supplied column by
   91: *           column, with the leading diagonal of the matrix in row 1 of
   92: *           the array, the first sub-diagonal starting at position 1 in
   93: *           row 2, and so on. The bottom right k by k triangle of the
   94: *           array A is not referenced.
   95: *           The following program segment will transfer a lower
   96: *           triangular band matrix from conventional full matrix storage
   97: *           to band storage:
   98: *
   99: *                 DO 20, J = 1, N
  100: *                    M = 1 - J
  101: *                    DO 10, I = J, MIN( N, J + K )
  102: *                       A( M + I, J ) = matrix( I, J )
  103: *              10    CONTINUE
  104: *              20 CONTINUE
  105: *
  106: *           Note that when DIAG = 'U' or 'u' the elements of the array A
  107: *           corresponding to the diagonal elements of the matrix are not
  108: *           referenced, but are assumed to be unity.
  109: *           Unchanged on exit.
  110: *
  111: *  LDA    - INTEGER.
  112: *           On entry, LDA specifies the first dimension of A as declared
  113: *           in the calling (sub) program. LDA must be at least
  114: *           ( k + 1 ).
  115: *           Unchanged on exit.
  116: *
  117: *  X      - COMPLEX*16       array of dimension at least
  118: *           ( 1 + ( n - 1 )*abs( INCX ) ).
  119: *           Before entry, the incremented array X must contain the n
  120: *           element vector x. On exit, X is overwritten with the
  121: *           tranformed vector x.
  122: *
  123: *  INCX   - INTEGER.
  124: *           On entry, INCX specifies the increment for the elements of
  125: *           X. INCX must not be zero.
  126: *           Unchanged on exit.
  127: *
  128: *  Further Details
  129: *  ===============
  130: *
  131: *  Level 2 Blas routine.
  132: *
  133: *  -- Written on 22-October-1986.
  134: *     Jack Dongarra, Argonne National Lab.
  135: *     Jeremy Du Croz, Nag Central Office.
  136: *     Sven Hammarling, Nag Central Office.
  137: *     Richard Hanson, Sandia National Labs.
  138: *
  139: *  =====================================================================
  140: *
  141: *     .. Parameters ..
  142:       DOUBLE COMPLEX ZERO
  143:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  144: *     ..
  145: *     .. Local Scalars ..
  146:       DOUBLE COMPLEX TEMP
  147:       INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
  148:       LOGICAL NOCONJ,NOUNIT
  149: *     ..
  150: *     .. External Functions ..
  151:       LOGICAL LSAME
  152:       EXTERNAL LSAME
  153: *     ..
  154: *     .. External Subroutines ..
  155:       EXTERNAL XERBLA
  156: *     ..
  157: *     .. Intrinsic Functions ..
  158:       INTRINSIC DCONJG,MAX,MIN
  159: *     ..
  160: *
  161: *     Test the input parameters.
  162: *
  163:       INFO = 0
  164:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  165:           INFO = 1
  166:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  167:      +         .NOT.LSAME(TRANS,'C')) THEN
  168:           INFO = 2
  169:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  170:           INFO = 3
  171:       ELSE IF (N.LT.0) THEN
  172:           INFO = 4
  173:       ELSE IF (K.LT.0) THEN
  174:           INFO = 5
  175:       ELSE IF (LDA.LT. (K+1)) THEN
  176:           INFO = 7
  177:       ELSE IF (INCX.EQ.0) THEN
  178:           INFO = 9
  179:       END IF
  180:       IF (INFO.NE.0) THEN
  181:           CALL XERBLA('ZTBMV ',INFO)
  182:           RETURN
  183:       END IF
  184: *
  185: *     Quick return if possible.
  186: *
  187:       IF (N.EQ.0) RETURN
  188: *
  189:       NOCONJ = LSAME(TRANS,'T')
  190:       NOUNIT = LSAME(DIAG,'N')
  191: *
  192: *     Set up the start point in X if the increment is not unity. This
  193: *     will be  ( N - 1 )*INCX   too small for descending loops.
  194: *
  195:       IF (INCX.LE.0) THEN
  196:           KX = 1 - (N-1)*INCX
  197:       ELSE IF (INCX.NE.1) THEN
  198:           KX = 1
  199:       END IF
  200: *
  201: *     Start the operations. In this version the elements of A are
  202: *     accessed sequentially with one pass through A.
  203: *
  204:       IF (LSAME(TRANS,'N')) THEN
  205: *
  206: *         Form  x := A*x.
  207: *
  208:           IF (LSAME(UPLO,'U')) THEN
  209:               KPLUS1 = K + 1
  210:               IF (INCX.EQ.1) THEN
  211:                   DO 20 J = 1,N
  212:                       IF (X(J).NE.ZERO) THEN
  213:                           TEMP = X(J)
  214:                           L = KPLUS1 - J
  215:                           DO 10 I = MAX(1,J-K),J - 1
  216:                               X(I) = X(I) + TEMP*A(L+I,J)
  217:    10                     CONTINUE
  218:                           IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
  219:                       END IF
  220:    20             CONTINUE
  221:               ELSE
  222:                   JX = KX
  223:                   DO 40 J = 1,N
  224:                       IF (X(JX).NE.ZERO) THEN
  225:                           TEMP = X(JX)
  226:                           IX = KX
  227:                           L = KPLUS1 - J
  228:                           DO 30 I = MAX(1,J-K),J - 1
  229:                               X(IX) = X(IX) + TEMP*A(L+I,J)
  230:                               IX = IX + INCX
  231:    30                     CONTINUE
  232:                           IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
  233:                       END IF
  234:                       JX = JX + INCX
  235:                       IF (J.GT.K) KX = KX + INCX
  236:    40             CONTINUE
  237:               END IF
  238:           ELSE
  239:               IF (INCX.EQ.1) THEN
  240:                   DO 60 J = N,1,-1
  241:                       IF (X(J).NE.ZERO) THEN
  242:                           TEMP = X(J)
  243:                           L = 1 - J
  244:                           DO 50 I = MIN(N,J+K),J + 1,-1
  245:                               X(I) = X(I) + TEMP*A(L+I,J)
  246:    50                     CONTINUE
  247:                           IF (NOUNIT) X(J) = X(J)*A(1,J)
  248:                       END IF
  249:    60             CONTINUE
  250:               ELSE
  251:                   KX = KX + (N-1)*INCX
  252:                   JX = KX
  253:                   DO 80 J = N,1,-1
  254:                       IF (X(JX).NE.ZERO) THEN
  255:                           TEMP = X(JX)
  256:                           IX = KX
  257:                           L = 1 - J
  258:                           DO 70 I = MIN(N,J+K),J + 1,-1
  259:                               X(IX) = X(IX) + TEMP*A(L+I,J)
  260:                               IX = IX - INCX
  261:    70                     CONTINUE
  262:                           IF (NOUNIT) X(JX) = X(JX)*A(1,J)
  263:                       END IF
  264:                       JX = JX - INCX
  265:                       IF ((N-J).GE.K) KX = KX - INCX
  266:    80             CONTINUE
  267:               END IF
  268:           END IF
  269:       ELSE
  270: *
  271: *        Form  x := A'*x  or  x := conjg( A' )*x.
  272: *
  273:           IF (LSAME(UPLO,'U')) THEN
  274:               KPLUS1 = K + 1
  275:               IF (INCX.EQ.1) THEN
  276:                   DO 110 J = N,1,-1
  277:                       TEMP = X(J)
  278:                       L = KPLUS1 - J
  279:                       IF (NOCONJ) THEN
  280:                           IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
  281:                           DO 90 I = J - 1,MAX(1,J-K),-1
  282:                               TEMP = TEMP + A(L+I,J)*X(I)
  283:    90                     CONTINUE
  284:                       ELSE
  285:                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
  286:                           DO 100 I = J - 1,MAX(1,J-K),-1
  287:                               TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
  288:   100                     CONTINUE
  289:                       END IF
  290:                       X(J) = TEMP
  291:   110             CONTINUE
  292:               ELSE
  293:                   KX = KX + (N-1)*INCX
  294:                   JX = KX
  295:                   DO 140 J = N,1,-1
  296:                       TEMP = X(JX)
  297:                       KX = KX - INCX
  298:                       IX = KX
  299:                       L = KPLUS1 - J
  300:                       IF (NOCONJ) THEN
  301:                           IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
  302:                           DO 120 I = J - 1,MAX(1,J-K),-1
  303:                               TEMP = TEMP + A(L+I,J)*X(IX)
  304:                               IX = IX - INCX
  305:   120                     CONTINUE
  306:                       ELSE
  307:                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
  308:                           DO 130 I = J - 1,MAX(1,J-K),-1
  309:                               TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
  310:                               IX = IX - INCX
  311:   130                     CONTINUE
  312:                       END IF
  313:                       X(JX) = TEMP
  314:                       JX = JX - INCX
  315:   140             CONTINUE
  316:               END IF
  317:           ELSE
  318:               IF (INCX.EQ.1) THEN
  319:                   DO 170 J = 1,N
  320:                       TEMP = X(J)
  321:                       L = 1 - J
  322:                       IF (NOCONJ) THEN
  323:                           IF (NOUNIT) TEMP = TEMP*A(1,J)
  324:                           DO 150 I = J + 1,MIN(N,J+K)
  325:                               TEMP = TEMP + A(L+I,J)*X(I)
  326:   150                     CONTINUE
  327:                       ELSE
  328:                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
  329:                           DO 160 I = J + 1,MIN(N,J+K)
  330:                               TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
  331:   160                     CONTINUE
  332:                       END IF
  333:                       X(J) = TEMP
  334:   170             CONTINUE
  335:               ELSE
  336:                   JX = KX
  337:                   DO 200 J = 1,N
  338:                       TEMP = X(JX)
  339:                       KX = KX + INCX
  340:                       IX = KX
  341:                       L = 1 - J
  342:                       IF (NOCONJ) THEN
  343:                           IF (NOUNIT) TEMP = TEMP*A(1,J)
  344:                           DO 180 I = J + 1,MIN(N,J+K)
  345:                               TEMP = TEMP + A(L+I,J)*X(IX)
  346:                               IX = IX + INCX
  347:   180                     CONTINUE
  348:                       ELSE
  349:                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
  350:                           DO 190 I = J + 1,MIN(N,J+K)
  351:                               TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
  352:                               IX = IX + INCX
  353:   190                     CONTINUE
  354:                       END IF
  355:                       X(JX) = TEMP
  356:                       JX = JX + INCX
  357:   200             CONTINUE
  358:               END IF
  359:           END IF
  360:       END IF
  361: *
  362:       RETURN
  363: *
  364: *     End of ZTBMV .
  365: *
  366:       END

CVSweb interface <joel.bertrand@systella.fr>