File:  [local] / rpl / lapack / blas / zsyrk.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:46 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSYRK
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE ZSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
   12: *
   13: *       .. Scalar Arguments ..
   14: *       COMPLEX*16 ALPHA,BETA
   15: *       INTEGER K,LDA,LDC,N
   16: *       CHARACTER TRANS,UPLO
   17: *       ..
   18: *       .. Array Arguments ..
   19: *       COMPLEX*16 A(LDA,*),C(LDC,*)
   20: *       ..
   21: *
   22: *
   23: *> \par Purpose:
   24: *  =============
   25: *>
   26: *> \verbatim
   27: *>
   28: *> ZSYRK  performs one of the symmetric rank k operations
   29: *>
   30: *>    C := alpha*A*A**T + beta*C,
   31: *>
   32: *> or
   33: *>
   34: *>    C := alpha*A**T*A + beta*C,
   35: *>
   36: *> where  alpha and beta  are scalars,  C is an  n by n symmetric matrix
   37: *> and  A  is an  n by k  matrix in the first case and a  k by n  matrix
   38: *> in the second case.
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] UPLO
   45: *> \verbatim
   46: *>          UPLO is CHARACTER*1
   47: *>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
   48: *>           triangular  part  of the  array  C  is to be  referenced  as
   49: *>           follows:
   50: *>
   51: *>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
   52: *>                                  is to be referenced.
   53: *>
   54: *>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
   55: *>                                  is to be referenced.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] TRANS
   59: *> \verbatim
   60: *>          TRANS is CHARACTER*1
   61: *>           On entry,  TRANS  specifies the operation to be performed as
   62: *>           follows:
   63: *>
   64: *>              TRANS = 'N' or 'n'   C := alpha*A*A**T + beta*C.
   65: *>
   66: *>              TRANS = 'T' or 't'   C := alpha*A**T*A + beta*C.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] N
   70: *> \verbatim
   71: *>          N is INTEGER
   72: *>           On entry,  N specifies the order of the matrix C.  N must be
   73: *>           at least zero.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] K
   77: *> \verbatim
   78: *>          K is INTEGER
   79: *>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
   80: *>           of  columns   of  the   matrix   A,   and  on   entry   with
   81: *>           TRANS = 'T' or 't',  K  specifies  the number of rows of the
   82: *>           matrix A.  K must be at least zero.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] ALPHA
   86: *> \verbatim
   87: *>          ALPHA is COMPLEX*16
   88: *>           On entry, ALPHA specifies the scalar alpha.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] A
   92: *> \verbatim
   93: *>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
   94: *>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
   95: *>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
   96: *>           part of the array  A  must contain the matrix  A,  otherwise
   97: *>           the leading  k by n  part of the array  A  must contain  the
   98: *>           matrix A.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDA
  102: *> \verbatim
  103: *>          LDA is INTEGER
  104: *>           On entry, LDA specifies the first dimension of A as declared
  105: *>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
  106: *>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
  107: *>           be at least  max( 1, k ).
  108: *> \endverbatim
  109: *>
  110: *> \param[in] BETA
  111: *> \verbatim
  112: *>          BETA is COMPLEX*16
  113: *>           On entry, BETA specifies the scalar beta.
  114: *> \endverbatim
  115: *>
  116: *> \param[in,out] C
  117: *> \verbatim
  118: *>          C is COMPLEX*16 array, dimension ( LDC, N )
  119: *>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
  120: *>           upper triangular part of the array C must contain the upper
  121: *>           triangular part  of the  symmetric matrix  and the strictly
  122: *>           lower triangular part of C is not referenced.  On exit, the
  123: *>           upper triangular part of the array  C is overwritten by the
  124: *>           upper triangular part of the updated matrix.
  125: *>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
  126: *>           lower triangular part of the array C must contain the lower
  127: *>           triangular part  of the  symmetric matrix  and the strictly
  128: *>           upper triangular part of C is not referenced.  On exit, the
  129: *>           lower triangular part of the array  C is overwritten by the
  130: *>           lower triangular part of the updated matrix.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LDC
  134: *> \verbatim
  135: *>          LDC is INTEGER
  136: *>           On entry, LDC specifies the first dimension of C as declared
  137: *>           in  the  calling  (sub)  program.   LDC  must  be  at  least
  138: *>           max( 1, n ).
  139: *> \endverbatim
  140: *
  141: *  Authors:
  142: *  ========
  143: *
  144: *> \author Univ. of Tennessee
  145: *> \author Univ. of California Berkeley
  146: *> \author Univ. of Colorado Denver
  147: *> \author NAG Ltd.
  148: *
  149: *> \ingroup complex16_blas_level3
  150: *
  151: *> \par Further Details:
  152: *  =====================
  153: *>
  154: *> \verbatim
  155: *>
  156: *>  Level 3 Blas routine.
  157: *>
  158: *>  -- Written on 8-February-1989.
  159: *>     Jack Dongarra, Argonne National Laboratory.
  160: *>     Iain Duff, AERE Harwell.
  161: *>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
  162: *>     Sven Hammarling, Numerical Algorithms Group Ltd.
  163: *> \endverbatim
  164: *>
  165: *  =====================================================================
  166:       SUBROUTINE ZSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
  167: *
  168: *  -- Reference BLAS level3 routine --
  169: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  170: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  171: *
  172: *     .. Scalar Arguments ..
  173:       COMPLEX*16 ALPHA,BETA
  174:       INTEGER K,LDA,LDC,N
  175:       CHARACTER TRANS,UPLO
  176: *     ..
  177: *     .. Array Arguments ..
  178:       COMPLEX*16 A(LDA,*),C(LDC,*)
  179: *     ..
  180: *
  181: *  =====================================================================
  182: *
  183: *     .. External Functions ..
  184:       LOGICAL LSAME
  185:       EXTERNAL LSAME
  186: *     ..
  187: *     .. External Subroutines ..
  188:       EXTERNAL XERBLA
  189: *     ..
  190: *     .. Intrinsic Functions ..
  191:       INTRINSIC MAX
  192: *     ..
  193: *     .. Local Scalars ..
  194:       COMPLEX*16 TEMP
  195:       INTEGER I,INFO,J,L,NROWA
  196:       LOGICAL UPPER
  197: *     ..
  198: *     .. Parameters ..
  199:       COMPLEX*16 ONE
  200:       PARAMETER (ONE= (1.0D+0,0.0D+0))
  201:       COMPLEX*16 ZERO
  202:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  203: *     ..
  204: *
  205: *     Test the input parameters.
  206: *
  207:       IF (LSAME(TRANS,'N')) THEN
  208:           NROWA = N
  209:       ELSE
  210:           NROWA = K
  211:       END IF
  212:       UPPER = LSAME(UPLO,'U')
  213: *
  214:       INFO = 0
  215:       IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
  216:           INFO = 1
  217:       ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
  218:      +         (.NOT.LSAME(TRANS,'T'))) THEN
  219:           INFO = 2
  220:       ELSE IF (N.LT.0) THEN
  221:           INFO = 3
  222:       ELSE IF (K.LT.0) THEN
  223:           INFO = 4
  224:       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  225:           INFO = 7
  226:       ELSE IF (LDC.LT.MAX(1,N)) THEN
  227:           INFO = 10
  228:       END IF
  229:       IF (INFO.NE.0) THEN
  230:           CALL XERBLA('ZSYRK ',INFO)
  231:           RETURN
  232:       END IF
  233: *
  234: *     Quick return if possible.
  235: *
  236:       IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
  237:      +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
  238: *
  239: *     And when  alpha.eq.zero.
  240: *
  241:       IF (ALPHA.EQ.ZERO) THEN
  242:           IF (UPPER) THEN
  243:               IF (BETA.EQ.ZERO) THEN
  244:                   DO 20 J = 1,N
  245:                       DO 10 I = 1,J
  246:                           C(I,J) = ZERO
  247:    10                 CONTINUE
  248:    20             CONTINUE
  249:               ELSE
  250:                   DO 40 J = 1,N
  251:                       DO 30 I = 1,J
  252:                           C(I,J) = BETA*C(I,J)
  253:    30                 CONTINUE
  254:    40             CONTINUE
  255:               END IF
  256:           ELSE
  257:               IF (BETA.EQ.ZERO) THEN
  258:                   DO 60 J = 1,N
  259:                       DO 50 I = J,N
  260:                           C(I,J) = ZERO
  261:    50                 CONTINUE
  262:    60             CONTINUE
  263:               ELSE
  264:                   DO 80 J = 1,N
  265:                       DO 70 I = J,N
  266:                           C(I,J) = BETA*C(I,J)
  267:    70                 CONTINUE
  268:    80             CONTINUE
  269:               END IF
  270:           END IF
  271:           RETURN
  272:       END IF
  273: *
  274: *     Start the operations.
  275: *
  276:       IF (LSAME(TRANS,'N')) THEN
  277: *
  278: *        Form  C := alpha*A*A**T + beta*C.
  279: *
  280:           IF (UPPER) THEN
  281:               DO 130 J = 1,N
  282:                   IF (BETA.EQ.ZERO) THEN
  283:                       DO 90 I = 1,J
  284:                           C(I,J) = ZERO
  285:    90                 CONTINUE
  286:                   ELSE IF (BETA.NE.ONE) THEN
  287:                       DO 100 I = 1,J
  288:                           C(I,J) = BETA*C(I,J)
  289:   100                 CONTINUE
  290:                   END IF
  291:                   DO 120 L = 1,K
  292:                       IF (A(J,L).NE.ZERO) THEN
  293:                           TEMP = ALPHA*A(J,L)
  294:                           DO 110 I = 1,J
  295:                               C(I,J) = C(I,J) + TEMP*A(I,L)
  296:   110                     CONTINUE
  297:                       END IF
  298:   120             CONTINUE
  299:   130         CONTINUE
  300:           ELSE
  301:               DO 180 J = 1,N
  302:                   IF (BETA.EQ.ZERO) THEN
  303:                       DO 140 I = J,N
  304:                           C(I,J) = ZERO
  305:   140                 CONTINUE
  306:                   ELSE IF (BETA.NE.ONE) THEN
  307:                       DO 150 I = J,N
  308:                           C(I,J) = BETA*C(I,J)
  309:   150                 CONTINUE
  310:                   END IF
  311:                   DO 170 L = 1,K
  312:                       IF (A(J,L).NE.ZERO) THEN
  313:                           TEMP = ALPHA*A(J,L)
  314:                           DO 160 I = J,N
  315:                               C(I,J) = C(I,J) + TEMP*A(I,L)
  316:   160                     CONTINUE
  317:                       END IF
  318:   170             CONTINUE
  319:   180         CONTINUE
  320:           END IF
  321:       ELSE
  322: *
  323: *        Form  C := alpha*A**T*A + beta*C.
  324: *
  325:           IF (UPPER) THEN
  326:               DO 210 J = 1,N
  327:                   DO 200 I = 1,J
  328:                       TEMP = ZERO
  329:                       DO 190 L = 1,K
  330:                           TEMP = TEMP + A(L,I)*A(L,J)
  331:   190                 CONTINUE
  332:                       IF (BETA.EQ.ZERO) THEN
  333:                           C(I,J) = ALPHA*TEMP
  334:                       ELSE
  335:                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  336:                       END IF
  337:   200             CONTINUE
  338:   210         CONTINUE
  339:           ELSE
  340:               DO 240 J = 1,N
  341:                   DO 230 I = J,N
  342:                       TEMP = ZERO
  343:                       DO 220 L = 1,K
  344:                           TEMP = TEMP + A(L,I)*A(L,J)
  345:   220                 CONTINUE
  346:                       IF (BETA.EQ.ZERO) THEN
  347:                           C(I,J) = ALPHA*TEMP
  348:                       ELSE
  349:                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  350:                       END IF
  351:   230             CONTINUE
  352:   240         CONTINUE
  353:           END IF
  354:       END IF
  355: *
  356:       RETURN
  357: *
  358: *     End of ZSYRK
  359: *
  360:       END

CVSweb interface <joel.bertrand@systella.fr>