File:  [local] / rpl / lapack / blas / zhpr2.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:51:27 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0

    1:       SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE COMPLEX ALPHA
    4:       INTEGER INCX,INCY,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE COMPLEX AP(*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  ZHPR2  performs the hermitian rank 2 operation
   15: *
   16: *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
   17: *
   18: *  where alpha is a scalar, x and y are n element vectors and A is an
   19: *  n by n hermitian matrix, supplied in packed form.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the matrix A is supplied in the packed
   27: *           array AP as follows:
   28: *
   29: *              UPLO = 'U' or 'u'   The upper triangular part of A is
   30: *                                  supplied in AP.
   31: *
   32: *              UPLO = 'L' or 'l'   The lower triangular part of A is
   33: *                                  supplied in AP.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  ALPHA  - COMPLEX*16      .
   43: *           On entry, ALPHA specifies the scalar alpha.
   44: *           Unchanged on exit.
   45: *
   46: *  X      - COMPLEX*16       array of dimension at least
   47: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   48: *           Before entry, the incremented array X must contain the n
   49: *           element vector x.
   50: *           Unchanged on exit.
   51: *
   52: *  INCX   - INTEGER.
   53: *           On entry, INCX specifies the increment for the elements of
   54: *           X. INCX must not be zero.
   55: *           Unchanged on exit.
   56: *
   57: *  Y      - COMPLEX*16       array of dimension at least
   58: *           ( 1 + ( n - 1 )*abs( INCY ) ).
   59: *           Before entry, the incremented array Y must contain the n
   60: *           element vector y.
   61: *           Unchanged on exit.
   62: *
   63: *  INCY   - INTEGER.
   64: *           On entry, INCY specifies the increment for the elements of
   65: *           Y. INCY must not be zero.
   66: *           Unchanged on exit.
   67: *
   68: *  AP     - COMPLEX*16       array of DIMENSION at least
   69: *           ( ( n*( n + 1 ) )/2 ).
   70: *           Before entry with  UPLO = 'U' or 'u', the array AP must
   71: *           contain the upper triangular part of the hermitian matrix
   72: *           packed sequentially, column by column, so that AP( 1 )
   73: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
   74: *           and a( 2, 2 ) respectively, and so on. On exit, the array
   75: *           AP is overwritten by the upper triangular part of the
   76: *           updated matrix.
   77: *           Before entry with UPLO = 'L' or 'l', the array AP must
   78: *           contain the lower triangular part of the hermitian matrix
   79: *           packed sequentially, column by column, so that AP( 1 )
   80: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
   81: *           and a( 3, 1 ) respectively, and so on. On exit, the array
   82: *           AP is overwritten by the lower triangular part of the
   83: *           updated matrix.
   84: *           Note that the imaginary parts of the diagonal elements need
   85: *           not be set, they are assumed to be zero, and on exit they
   86: *           are set to zero.
   87: *
   88: *  Further Details
   89: *  ===============
   90: *
   91: *  Level 2 Blas routine.
   92: *
   93: *  -- Written on 22-October-1986.
   94: *     Jack Dongarra, Argonne National Lab.
   95: *     Jeremy Du Croz, Nag Central Office.
   96: *     Sven Hammarling, Nag Central Office.
   97: *     Richard Hanson, Sandia National Labs.
   98: *
   99: *  =====================================================================
  100: *
  101: *     .. Parameters ..
  102:       DOUBLE COMPLEX ZERO
  103:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  104: *     ..
  105: *     .. Local Scalars ..
  106:       DOUBLE COMPLEX TEMP1,TEMP2
  107:       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
  108: *     ..
  109: *     .. External Functions ..
  110:       LOGICAL LSAME
  111:       EXTERNAL LSAME
  112: *     ..
  113: *     .. External Subroutines ..
  114:       EXTERNAL XERBLA
  115: *     ..
  116: *     .. Intrinsic Functions ..
  117:       INTRINSIC DBLE,DCONJG
  118: *     ..
  119: *
  120: *     Test the input parameters.
  121: *
  122:       INFO = 0
  123:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  124:           INFO = 1
  125:       ELSE IF (N.LT.0) THEN
  126:           INFO = 2
  127:       ELSE IF (INCX.EQ.0) THEN
  128:           INFO = 5
  129:       ELSE IF (INCY.EQ.0) THEN
  130:           INFO = 7
  131:       END IF
  132:       IF (INFO.NE.0) THEN
  133:           CALL XERBLA('ZHPR2 ',INFO)
  134:           RETURN
  135:       END IF
  136: *
  137: *     Quick return if possible.
  138: *
  139:       IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
  140: *
  141: *     Set up the start points in X and Y if the increments are not both
  142: *     unity.
  143: *
  144:       IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
  145:           IF (INCX.GT.0) THEN
  146:               KX = 1
  147:           ELSE
  148:               KX = 1 - (N-1)*INCX
  149:           END IF
  150:           IF (INCY.GT.0) THEN
  151:               KY = 1
  152:           ELSE
  153:               KY = 1 - (N-1)*INCY
  154:           END IF
  155:           JX = KX
  156:           JY = KY
  157:       END IF
  158: *
  159: *     Start the operations. In this version the elements of the array AP
  160: *     are accessed sequentially with one pass through AP.
  161: *
  162:       KK = 1
  163:       IF (LSAME(UPLO,'U')) THEN
  164: *
  165: *        Form  A  when upper triangle is stored in AP.
  166: *
  167:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  168:               DO 20 J = 1,N
  169:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  170:                       TEMP1 = ALPHA*DCONJG(Y(J))
  171:                       TEMP2 = DCONJG(ALPHA*X(J))
  172:                       K = KK
  173:                       DO 10 I = 1,J - 1
  174:                           AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
  175:                           K = K + 1
  176:    10                 CONTINUE
  177:                       AP(KK+J-1) = DBLE(AP(KK+J-1)) +
  178:      +                             DBLE(X(J)*TEMP1+Y(J)*TEMP2)
  179:                   ELSE
  180:                       AP(KK+J-1) = DBLE(AP(KK+J-1))
  181:                   END IF
  182:                   KK = KK + J
  183:    20         CONTINUE
  184:           ELSE
  185:               DO 40 J = 1,N
  186:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  187:                       TEMP1 = ALPHA*DCONJG(Y(JY))
  188:                       TEMP2 = DCONJG(ALPHA*X(JX))
  189:                       IX = KX
  190:                       IY = KY
  191:                       DO 30 K = KK,KK + J - 2
  192:                           AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
  193:                           IX = IX + INCX
  194:                           IY = IY + INCY
  195:    30                 CONTINUE
  196:                       AP(KK+J-1) = DBLE(AP(KK+J-1)) +
  197:      +                             DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
  198:                   ELSE
  199:                       AP(KK+J-1) = DBLE(AP(KK+J-1))
  200:                   END IF
  201:                   JX = JX + INCX
  202:                   JY = JY + INCY
  203:                   KK = KK + J
  204:    40         CONTINUE
  205:           END IF
  206:       ELSE
  207: *
  208: *        Form  A  when lower triangle is stored in AP.
  209: *
  210:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  211:               DO 60 J = 1,N
  212:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  213:                       TEMP1 = ALPHA*DCONJG(Y(J))
  214:                       TEMP2 = DCONJG(ALPHA*X(J))
  215:                       AP(KK) = DBLE(AP(KK)) +
  216:      +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
  217:                       K = KK + 1
  218:                       DO 50 I = J + 1,N
  219:                           AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
  220:                           K = K + 1
  221:    50                 CONTINUE
  222:                   ELSE
  223:                       AP(KK) = DBLE(AP(KK))
  224:                   END IF
  225:                   KK = KK + N - J + 1
  226:    60         CONTINUE
  227:           ELSE
  228:               DO 80 J = 1,N
  229:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  230:                       TEMP1 = ALPHA*DCONJG(Y(JY))
  231:                       TEMP2 = DCONJG(ALPHA*X(JX))
  232:                       AP(KK) = DBLE(AP(KK)) +
  233:      +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
  234:                       IX = JX
  235:                       IY = JY
  236:                       DO 70 K = KK + 1,KK + N - J
  237:                           IX = IX + INCX
  238:                           IY = IY + INCY
  239:                           AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
  240:    70                 CONTINUE
  241:                   ELSE
  242:                       AP(KK) = DBLE(AP(KK))
  243:                   END IF
  244:                   JX = JX + INCX
  245:                   JY = JY + INCY
  246:                   KK = KK + N - J + 1
  247:    80         CONTINUE
  248:           END IF
  249:       END IF
  250: *
  251:       RETURN
  252: *
  253: *     End of ZHPR2 .
  254: *
  255:       END

CVSweb interface <joel.bertrand@systella.fr>