File:  [local] / rpl / lapack / blas / zhpr.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE PRECISION ALPHA
    4:       INTEGER INCX,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE COMPLEX AP(*),X(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  ZHPR    performs the hermitian rank 1 operation
   15: *
   16: *     A := alpha*x*conjg( x' ) + A,
   17: *
   18: *  where alpha is a real scalar, x is an n element vector and A is an
   19: *  n by n hermitian matrix, supplied in packed form.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the matrix A is supplied in the packed
   27: *           array AP as follows:
   28: *
   29: *              UPLO = 'U' or 'u'   The upper triangular part of A is
   30: *                                  supplied in AP.
   31: *
   32: *              UPLO = 'L' or 'l'   The lower triangular part of A is
   33: *                                  supplied in AP.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  ALPHA  - DOUBLE PRECISION.
   43: *           On entry, ALPHA specifies the scalar alpha.
   44: *           Unchanged on exit.
   45: *
   46: *  X      - COMPLEX*16       array of dimension at least
   47: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   48: *           Before entry, the incremented array X must contain the n
   49: *           element vector x.
   50: *           Unchanged on exit.
   51: *
   52: *  INCX   - INTEGER.
   53: *           On entry, INCX specifies the increment for the elements of
   54: *           X. INCX must not be zero.
   55: *           Unchanged on exit.
   56: *
   57: *  AP     - COMPLEX*16       array of DIMENSION at least
   58: *           ( ( n*( n + 1 ) )/2 ).
   59: *           Before entry with  UPLO = 'U' or 'u', the array AP must
   60: *           contain the upper triangular part of the hermitian matrix
   61: *           packed sequentially, column by column, so that AP( 1 )
   62: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
   63: *           and a( 2, 2 ) respectively, and so on. On exit, the array
   64: *           AP is overwritten by the upper triangular part of the
   65: *           updated matrix.
   66: *           Before entry with UPLO = 'L' or 'l', the array AP must
   67: *           contain the lower triangular part of the hermitian matrix
   68: *           packed sequentially, column by column, so that AP( 1 )
   69: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
   70: *           and a( 3, 1 ) respectively, and so on. On exit, the array
   71: *           AP is overwritten by the lower triangular part of the
   72: *           updated matrix.
   73: *           Note that the imaginary parts of the diagonal elements need
   74: *           not be set, they are assumed to be zero, and on exit they
   75: *           are set to zero.
   76: *
   77: *  Further Details
   78: *  ===============
   79: *
   80: *  Level 2 Blas routine.
   81: *
   82: *  -- Written on 22-October-1986.
   83: *     Jack Dongarra, Argonne National Lab.
   84: *     Jeremy Du Croz, Nag Central Office.
   85: *     Sven Hammarling, Nag Central Office.
   86: *     Richard Hanson, Sandia National Labs.
   87: *
   88: *  =====================================================================
   89: *
   90: *     .. Parameters ..
   91:       DOUBLE COMPLEX ZERO
   92:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
   93: *     ..
   94: *     .. Local Scalars ..
   95:       DOUBLE COMPLEX TEMP
   96:       INTEGER I,INFO,IX,J,JX,K,KK,KX
   97: *     ..
   98: *     .. External Functions ..
   99:       LOGICAL LSAME
  100:       EXTERNAL LSAME
  101: *     ..
  102: *     .. External Subroutines ..
  103:       EXTERNAL XERBLA
  104: *     ..
  105: *     .. Intrinsic Functions ..
  106:       INTRINSIC DBLE,DCONJG
  107: *     ..
  108: *
  109: *     Test the input parameters.
  110: *
  111:       INFO = 0
  112:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  113:           INFO = 1
  114:       ELSE IF (N.LT.0) THEN
  115:           INFO = 2
  116:       ELSE IF (INCX.EQ.0) THEN
  117:           INFO = 5
  118:       END IF
  119:       IF (INFO.NE.0) THEN
  120:           CALL XERBLA('ZHPR  ',INFO)
  121:           RETURN
  122:       END IF
  123: *
  124: *     Quick return if possible.
  125: *
  126:       IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN
  127: *
  128: *     Set the start point in X if the increment is not unity.
  129: *
  130:       IF (INCX.LE.0) THEN
  131:           KX = 1 - (N-1)*INCX
  132:       ELSE IF (INCX.NE.1) THEN
  133:           KX = 1
  134:       END IF
  135: *
  136: *     Start the operations. In this version the elements of the array AP
  137: *     are accessed sequentially with one pass through AP.
  138: *
  139:       KK = 1
  140:       IF (LSAME(UPLO,'U')) THEN
  141: *
  142: *        Form  A  when upper triangle is stored in AP.
  143: *
  144:           IF (INCX.EQ.1) THEN
  145:               DO 20 J = 1,N
  146:                   IF (X(J).NE.ZERO) THEN
  147:                       TEMP = ALPHA*DCONJG(X(J))
  148:                       K = KK
  149:                       DO 10 I = 1,J - 1
  150:                           AP(K) = AP(K) + X(I)*TEMP
  151:                           K = K + 1
  152:    10                 CONTINUE
  153:                       AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(J)*TEMP)
  154:                   ELSE
  155:                       AP(KK+J-1) = DBLE(AP(KK+J-1))
  156:                   END IF
  157:                   KK = KK + J
  158:    20         CONTINUE
  159:           ELSE
  160:               JX = KX
  161:               DO 40 J = 1,N
  162:                   IF (X(JX).NE.ZERO) THEN
  163:                       TEMP = ALPHA*DCONJG(X(JX))
  164:                       IX = KX
  165:                       DO 30 K = KK,KK + J - 2
  166:                           AP(K) = AP(K) + X(IX)*TEMP
  167:                           IX = IX + INCX
  168:    30                 CONTINUE
  169:                       AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(JX)*TEMP)
  170:                   ELSE
  171:                       AP(KK+J-1) = DBLE(AP(KK+J-1))
  172:                   END IF
  173:                   JX = JX + INCX
  174:                   KK = KK + J
  175:    40         CONTINUE
  176:           END IF
  177:       ELSE
  178: *
  179: *        Form  A  when lower triangle is stored in AP.
  180: *
  181:           IF (INCX.EQ.1) THEN
  182:               DO 60 J = 1,N
  183:                   IF (X(J).NE.ZERO) THEN
  184:                       TEMP = ALPHA*DCONJG(X(J))
  185:                       AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(J))
  186:                       K = KK + 1
  187:                       DO 50 I = J + 1,N
  188:                           AP(K) = AP(K) + X(I)*TEMP
  189:                           K = K + 1
  190:    50                 CONTINUE
  191:                   ELSE
  192:                       AP(KK) = DBLE(AP(KK))
  193:                   END IF
  194:                   KK = KK + N - J + 1
  195:    60         CONTINUE
  196:           ELSE
  197:               JX = KX
  198:               DO 80 J = 1,N
  199:                   IF (X(JX).NE.ZERO) THEN
  200:                       TEMP = ALPHA*DCONJG(X(JX))
  201:                       AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(JX))
  202:                       IX = JX
  203:                       DO 70 K = KK + 1,KK + N - J
  204:                           IX = IX + INCX
  205:                           AP(K) = AP(K) + X(IX)*TEMP
  206:    70                 CONTINUE
  207:                   ELSE
  208:                       AP(KK) = DBLE(AP(KK))
  209:                   END IF
  210:                   JX = JX + INCX
  211:                   KK = KK + N - J + 1
  212:    80         CONTINUE
  213:           END IF
  214:       END IF
  215: *
  216:       RETURN
  217: *
  218: *     End of ZHPR  .
  219: *
  220:       END

CVSweb interface <joel.bertrand@systella.fr>