File:  [local] / rpl / lapack / blas / zhpmv.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:03 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE COMPLEX ALPHA,BETA
    4:       INTEGER INCX,INCY,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE COMPLEX AP(*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  ZHPMV  performs the matrix-vector operation
   15: *
   16: *     y := alpha*A*x + beta*y,
   17: *
   18: *  where alpha and beta are scalars, x and y are n element vectors and
   19: *  A is an n by n hermitian matrix, supplied in packed form.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the matrix A is supplied in the packed
   27: *           array AP as follows:
   28: *
   29: *              UPLO = 'U' or 'u'   The upper triangular part of A is
   30: *                                  supplied in AP.
   31: *
   32: *              UPLO = 'L' or 'l'   The lower triangular part of A is
   33: *                                  supplied in AP.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  ALPHA  - COMPLEX*16      .
   43: *           On entry, ALPHA specifies the scalar alpha.
   44: *           Unchanged on exit.
   45: *
   46: *  AP     - COMPLEX*16       array of DIMENSION at least
   47: *           ( ( n*( n + 1 ) )/2 ).
   48: *           Before entry with UPLO = 'U' or 'u', the array AP must
   49: *           contain the upper triangular part of the hermitian matrix
   50: *           packed sequentially, column by column, so that AP( 1 )
   51: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
   52: *           and a( 2, 2 ) respectively, and so on.
   53: *           Before entry with UPLO = 'L' or 'l', the array AP must
   54: *           contain the lower triangular part of the hermitian matrix
   55: *           packed sequentially, column by column, so that AP( 1 )
   56: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
   57: *           and a( 3, 1 ) respectively, and so on.
   58: *           Note that the imaginary parts of the diagonal elements need
   59: *           not be set and are assumed to be zero.
   60: *           Unchanged on exit.
   61: *
   62: *  X      - COMPLEX*16       array of dimension at least
   63: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   64: *           Before entry, the incremented array X must contain the n
   65: *           element vector x.
   66: *           Unchanged on exit.
   67: *
   68: *  INCX   - INTEGER.
   69: *           On entry, INCX specifies the increment for the elements of
   70: *           X. INCX must not be zero.
   71: *           Unchanged on exit.
   72: *
   73: *  BETA   - COMPLEX*16      .
   74: *           On entry, BETA specifies the scalar beta. When BETA is
   75: *           supplied as zero then Y need not be set on input.
   76: *           Unchanged on exit.
   77: *
   78: *  Y      - COMPLEX*16       array of dimension at least
   79: *           ( 1 + ( n - 1 )*abs( INCY ) ).
   80: *           Before entry, the incremented array Y must contain the n
   81: *           element vector y. On exit, Y is overwritten by the updated
   82: *           vector y.
   83: *
   84: *  INCY   - INTEGER.
   85: *           On entry, INCY specifies the increment for the elements of
   86: *           Y. INCY must not be zero.
   87: *           Unchanged on exit.
   88: *
   89: *  Further Details
   90: *  ===============
   91: *
   92: *  Level 2 Blas routine.
   93: *  The vector and matrix arguments are not referenced when N = 0, or M = 0
   94: *
   95: *  -- Written on 22-October-1986.
   96: *     Jack Dongarra, Argonne National Lab.
   97: *     Jeremy Du Croz, Nag Central Office.
   98: *     Sven Hammarling, Nag Central Office.
   99: *     Richard Hanson, Sandia National Labs.
  100: *
  101: *  =====================================================================
  102: *
  103: *     .. Parameters ..
  104:       DOUBLE COMPLEX ONE
  105:       PARAMETER (ONE= (1.0D+0,0.0D+0))
  106:       DOUBLE COMPLEX ZERO
  107:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  108: *     ..
  109: *     .. Local Scalars ..
  110:       DOUBLE COMPLEX TEMP1,TEMP2
  111:       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
  112: *     ..
  113: *     .. External Functions ..
  114:       LOGICAL LSAME
  115:       EXTERNAL LSAME
  116: *     ..
  117: *     .. External Subroutines ..
  118:       EXTERNAL XERBLA
  119: *     ..
  120: *     .. Intrinsic Functions ..
  121:       INTRINSIC DBLE,DCONJG
  122: *     ..
  123: *
  124: *     Test the input parameters.
  125: *
  126:       INFO = 0
  127:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  128:           INFO = 1
  129:       ELSE IF (N.LT.0) THEN
  130:           INFO = 2
  131:       ELSE IF (INCX.EQ.0) THEN
  132:           INFO = 6
  133:       ELSE IF (INCY.EQ.0) THEN
  134:           INFO = 9
  135:       END IF
  136:       IF (INFO.NE.0) THEN
  137:           CALL XERBLA('ZHPMV ',INFO)
  138:           RETURN
  139:       END IF
  140: *
  141: *     Quick return if possible.
  142: *
  143:       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  144: *
  145: *     Set up the start points in  X  and  Y.
  146: *
  147:       IF (INCX.GT.0) THEN
  148:           KX = 1
  149:       ELSE
  150:           KX = 1 - (N-1)*INCX
  151:       END IF
  152:       IF (INCY.GT.0) THEN
  153:           KY = 1
  154:       ELSE
  155:           KY = 1 - (N-1)*INCY
  156:       END IF
  157: *
  158: *     Start the operations. In this version the elements of the array AP
  159: *     are accessed sequentially with one pass through AP.
  160: *
  161: *     First form  y := beta*y.
  162: *
  163:       IF (BETA.NE.ONE) THEN
  164:           IF (INCY.EQ.1) THEN
  165:               IF (BETA.EQ.ZERO) THEN
  166:                   DO 10 I = 1,N
  167:                       Y(I) = ZERO
  168:    10             CONTINUE
  169:               ELSE
  170:                   DO 20 I = 1,N
  171:                       Y(I) = BETA*Y(I)
  172:    20             CONTINUE
  173:               END IF
  174:           ELSE
  175:               IY = KY
  176:               IF (BETA.EQ.ZERO) THEN
  177:                   DO 30 I = 1,N
  178:                       Y(IY) = ZERO
  179:                       IY = IY + INCY
  180:    30             CONTINUE
  181:               ELSE
  182:                   DO 40 I = 1,N
  183:                       Y(IY) = BETA*Y(IY)
  184:                       IY = IY + INCY
  185:    40             CONTINUE
  186:               END IF
  187:           END IF
  188:       END IF
  189:       IF (ALPHA.EQ.ZERO) RETURN
  190:       KK = 1
  191:       IF (LSAME(UPLO,'U')) THEN
  192: *
  193: *        Form  y  when AP contains the upper triangle.
  194: *
  195:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  196:               DO 60 J = 1,N
  197:                   TEMP1 = ALPHA*X(J)
  198:                   TEMP2 = ZERO
  199:                   K = KK
  200:                   DO 50 I = 1,J - 1
  201:                       Y(I) = Y(I) + TEMP1*AP(K)
  202:                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
  203:                       K = K + 1
  204:    50             CONTINUE
  205:                   Y(J) = Y(J) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
  206:                   KK = KK + J
  207:    60         CONTINUE
  208:           ELSE
  209:               JX = KX
  210:               JY = KY
  211:               DO 80 J = 1,N
  212:                   TEMP1 = ALPHA*X(JX)
  213:                   TEMP2 = ZERO
  214:                   IX = KX
  215:                   IY = KY
  216:                   DO 70 K = KK,KK + J - 2
  217:                       Y(IY) = Y(IY) + TEMP1*AP(K)
  218:                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
  219:                       IX = IX + INCX
  220:                       IY = IY + INCY
  221:    70             CONTINUE
  222:                   Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
  223:                   JX = JX + INCX
  224:                   JY = JY + INCY
  225:                   KK = KK + J
  226:    80         CONTINUE
  227:           END IF
  228:       ELSE
  229: *
  230: *        Form  y  when AP contains the lower triangle.
  231: *
  232:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  233:               DO 100 J = 1,N
  234:                   TEMP1 = ALPHA*X(J)
  235:                   TEMP2 = ZERO
  236:                   Y(J) = Y(J) + TEMP1*DBLE(AP(KK))
  237:                   K = KK + 1
  238:                   DO 90 I = J + 1,N
  239:                       Y(I) = Y(I) + TEMP1*AP(K)
  240:                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
  241:                       K = K + 1
  242:    90             CONTINUE
  243:                   Y(J) = Y(J) + ALPHA*TEMP2
  244:                   KK = KK + (N-J+1)
  245:   100         CONTINUE
  246:           ELSE
  247:               JX = KX
  248:               JY = KY
  249:               DO 120 J = 1,N
  250:                   TEMP1 = ALPHA*X(JX)
  251:                   TEMP2 = ZERO
  252:                   Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK))
  253:                   IX = JX
  254:                   IY = JY
  255:                   DO 110 K = KK + 1,KK + N - J
  256:                       IX = IX + INCX
  257:                       IY = IY + INCY
  258:                       Y(IY) = Y(IY) + TEMP1*AP(K)
  259:                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
  260:   110             CONTINUE
  261:                   Y(JY) = Y(JY) + ALPHA*TEMP2
  262:                   JX = JX + INCX
  263:                   JY = JY + INCY
  264:                   KK = KK + (N-J+1)
  265:   120         CONTINUE
  266:           END IF
  267:       END IF
  268: *
  269:       RETURN
  270: *
  271: *     End of ZHPMV .
  272: *
  273:       END

CVSweb interface <joel.bertrand@systella.fr>