File:  [local] / rpl / lapack / blas / zhpmv.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 4 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE COMPLEX ALPHA,BETA
    4:       INTEGER INCX,INCY,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE COMPLEX AP(*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  ZHPMV  performs the matrix-vector operation
   15: *
   16: *     y := alpha*A*x + beta*y,
   17: *
   18: *  where alpha and beta are scalars, x and y are n element vectors and
   19: *  A is an n by n hermitian matrix, supplied in packed form.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the matrix A is supplied in the packed
   27: *           array AP as follows:
   28: *
   29: *              UPLO = 'U' or 'u'   The upper triangular part of A is
   30: *                                  supplied in AP.
   31: *
   32: *              UPLO = 'L' or 'l'   The lower triangular part of A is
   33: *                                  supplied in AP.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  ALPHA  - COMPLEX*16      .
   43: *           On entry, ALPHA specifies the scalar alpha.
   44: *           Unchanged on exit.
   45: *
   46: *  AP     - COMPLEX*16       array of DIMENSION at least
   47: *           ( ( n*( n + 1 ) )/2 ).
   48: *           Before entry with UPLO = 'U' or 'u', the array AP must
   49: *           contain the upper triangular part of the hermitian matrix
   50: *           packed sequentially, column by column, so that AP( 1 )
   51: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
   52: *           and a( 2, 2 ) respectively, and so on.
   53: *           Before entry with UPLO = 'L' or 'l', the array AP must
   54: *           contain the lower triangular part of the hermitian matrix
   55: *           packed sequentially, column by column, so that AP( 1 )
   56: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
   57: *           and a( 3, 1 ) respectively, and so on.
   58: *           Note that the imaginary parts of the diagonal elements need
   59: *           not be set and are assumed to be zero.
   60: *           Unchanged on exit.
   61: *
   62: *  X      - COMPLEX*16       array of dimension at least
   63: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   64: *           Before entry, the incremented array X must contain the n
   65: *           element vector x.
   66: *           Unchanged on exit.
   67: *
   68: *  INCX   - INTEGER.
   69: *           On entry, INCX specifies the increment for the elements of
   70: *           X. INCX must not be zero.
   71: *           Unchanged on exit.
   72: *
   73: *  BETA   - COMPLEX*16      .
   74: *           On entry, BETA specifies the scalar beta. When BETA is
   75: *           supplied as zero then Y need not be set on input.
   76: *           Unchanged on exit.
   77: *
   78: *  Y      - COMPLEX*16       array of dimension at least
   79: *           ( 1 + ( n - 1 )*abs( INCY ) ).
   80: *           Before entry, the incremented array Y must contain the n
   81: *           element vector y. On exit, Y is overwritten by the updated
   82: *           vector y.
   83: *
   84: *  INCY   - INTEGER.
   85: *           On entry, INCY specifies the increment for the elements of
   86: *           Y. INCY must not be zero.
   87: *           Unchanged on exit.
   88: *
   89: *  Further Details
   90: *  ===============
   91: *
   92: *  Level 2 Blas routine.
   93: *
   94: *  -- Written on 22-October-1986.
   95: *     Jack Dongarra, Argonne National Lab.
   96: *     Jeremy Du Croz, Nag Central Office.
   97: *     Sven Hammarling, Nag Central Office.
   98: *     Richard Hanson, Sandia National Labs.
   99: *
  100: *  =====================================================================
  101: *
  102: *     .. Parameters ..
  103:       DOUBLE COMPLEX ONE
  104:       PARAMETER (ONE= (1.0D+0,0.0D+0))
  105:       DOUBLE COMPLEX ZERO
  106:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  107: *     ..
  108: *     .. Local Scalars ..
  109:       DOUBLE COMPLEX TEMP1,TEMP2
  110:       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
  111: *     ..
  112: *     .. External Functions ..
  113:       LOGICAL LSAME
  114:       EXTERNAL LSAME
  115: *     ..
  116: *     .. External Subroutines ..
  117:       EXTERNAL XERBLA
  118: *     ..
  119: *     .. Intrinsic Functions ..
  120:       INTRINSIC DBLE,DCONJG
  121: *     ..
  122: *
  123: *     Test the input parameters.
  124: *
  125:       INFO = 0
  126:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  127:           INFO = 1
  128:       ELSE IF (N.LT.0) THEN
  129:           INFO = 2
  130:       ELSE IF (INCX.EQ.0) THEN
  131:           INFO = 6
  132:       ELSE IF (INCY.EQ.0) THEN
  133:           INFO = 9
  134:       END IF
  135:       IF (INFO.NE.0) THEN
  136:           CALL XERBLA('ZHPMV ',INFO)
  137:           RETURN
  138:       END IF
  139: *
  140: *     Quick return if possible.
  141: *
  142:       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  143: *
  144: *     Set up the start points in  X  and  Y.
  145: *
  146:       IF (INCX.GT.0) THEN
  147:           KX = 1
  148:       ELSE
  149:           KX = 1 - (N-1)*INCX
  150:       END IF
  151:       IF (INCY.GT.0) THEN
  152:           KY = 1
  153:       ELSE
  154:           KY = 1 - (N-1)*INCY
  155:       END IF
  156: *
  157: *     Start the operations. In this version the elements of the array AP
  158: *     are accessed sequentially with one pass through AP.
  159: *
  160: *     First form  y := beta*y.
  161: *
  162:       IF (BETA.NE.ONE) THEN
  163:           IF (INCY.EQ.1) THEN
  164:               IF (BETA.EQ.ZERO) THEN
  165:                   DO 10 I = 1,N
  166:                       Y(I) = ZERO
  167:    10             CONTINUE
  168:               ELSE
  169:                   DO 20 I = 1,N
  170:                       Y(I) = BETA*Y(I)
  171:    20             CONTINUE
  172:               END IF
  173:           ELSE
  174:               IY = KY
  175:               IF (BETA.EQ.ZERO) THEN
  176:                   DO 30 I = 1,N
  177:                       Y(IY) = ZERO
  178:                       IY = IY + INCY
  179:    30             CONTINUE
  180:               ELSE
  181:                   DO 40 I = 1,N
  182:                       Y(IY) = BETA*Y(IY)
  183:                       IY = IY + INCY
  184:    40             CONTINUE
  185:               END IF
  186:           END IF
  187:       END IF
  188:       IF (ALPHA.EQ.ZERO) RETURN
  189:       KK = 1
  190:       IF (LSAME(UPLO,'U')) THEN
  191: *
  192: *        Form  y  when AP contains the upper triangle.
  193: *
  194:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  195:               DO 60 J = 1,N
  196:                   TEMP1 = ALPHA*X(J)
  197:                   TEMP2 = ZERO
  198:                   K = KK
  199:                   DO 50 I = 1,J - 1
  200:                       Y(I) = Y(I) + TEMP1*AP(K)
  201:                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
  202:                       K = K + 1
  203:    50             CONTINUE
  204:                   Y(J) = Y(J) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
  205:                   KK = KK + J
  206:    60         CONTINUE
  207:           ELSE
  208:               JX = KX
  209:               JY = KY
  210:               DO 80 J = 1,N
  211:                   TEMP1 = ALPHA*X(JX)
  212:                   TEMP2 = ZERO
  213:                   IX = KX
  214:                   IY = KY
  215:                   DO 70 K = KK,KK + J - 2
  216:                       Y(IY) = Y(IY) + TEMP1*AP(K)
  217:                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
  218:                       IX = IX + INCX
  219:                       IY = IY + INCY
  220:    70             CONTINUE
  221:                   Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
  222:                   JX = JX + INCX
  223:                   JY = JY + INCY
  224:                   KK = KK + J
  225:    80         CONTINUE
  226:           END IF
  227:       ELSE
  228: *
  229: *        Form  y  when AP contains the lower triangle.
  230: *
  231:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  232:               DO 100 J = 1,N
  233:                   TEMP1 = ALPHA*X(J)
  234:                   TEMP2 = ZERO
  235:                   Y(J) = Y(J) + TEMP1*DBLE(AP(KK))
  236:                   K = KK + 1
  237:                   DO 90 I = J + 1,N
  238:                       Y(I) = Y(I) + TEMP1*AP(K)
  239:                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
  240:                       K = K + 1
  241:    90             CONTINUE
  242:                   Y(J) = Y(J) + ALPHA*TEMP2
  243:                   KK = KK + (N-J+1)
  244:   100         CONTINUE
  245:           ELSE
  246:               JX = KX
  247:               JY = KY
  248:               DO 120 J = 1,N
  249:                   TEMP1 = ALPHA*X(JX)
  250:                   TEMP2 = ZERO
  251:                   Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK))
  252:                   IX = JX
  253:                   IY = JY
  254:                   DO 110 K = KK + 1,KK + N - J
  255:                       IX = IX + INCX
  256:                       IY = IY + INCY
  257:                       Y(IY) = Y(IY) + TEMP1*AP(K)
  258:                       TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
  259:   110             CONTINUE
  260:                   Y(JY) = Y(JY) + ALPHA*TEMP2
  261:                   JX = JX + INCX
  262:                   JY = JY + INCY
  263:                   KK = KK + (N-J+1)
  264:   120         CONTINUE
  265:           END IF
  266:       END IF
  267: *
  268:       RETURN
  269: *
  270: *     End of ZHPMV .
  271: *
  272:       END

CVSweb interface <joel.bertrand@systella.fr>