File:  [local] / rpl / lapack / blas / zher2.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:37:09 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Mise à jour de blas.

    1: *> \brief \b ZHER2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
   12:    13: *       .. Scalar Arguments ..
   14: *       COMPLEX*16 ALPHA
   15: *       INTEGER INCX,INCY,LDA,N
   16: *       CHARACTER UPLO
   17: *       ..
   18: *       .. Array Arguments ..
   19: *       COMPLEX*16 A(LDA,*),X(*),Y(*)
   20: *       ..
   21: *  
   22: *
   23: *> \par Purpose:
   24: *  =============
   25: *>
   26: *> \verbatim
   27: *>
   28: *> ZHER2  performs the hermitian rank 2 operation
   29: *>
   30: *>    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
   31: *>
   32: *> where alpha is a scalar, x and y are n element vectors and A is an n
   33: *> by n hermitian matrix.
   34: *> \endverbatim
   35: *
   36: *  Arguments:
   37: *  ==========
   38: *
   39: *> \param[in] UPLO
   40: *> \verbatim
   41: *>          UPLO is CHARACTER*1
   42: *>           On entry, UPLO specifies whether the upper or lower
   43: *>           triangular part of the array A is to be referenced as
   44: *>           follows:
   45: *>
   46: *>              UPLO = 'U' or 'u'   Only the upper triangular part of A
   47: *>                                  is to be referenced.
   48: *>
   49: *>              UPLO = 'L' or 'l'   Only the lower triangular part of A
   50: *>                                  is to be referenced.
   51: *> \endverbatim
   52: *>
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>           On entry, N specifies the order of the matrix A.
   57: *>           N must be at least zero.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] ALPHA
   61: *> \verbatim
   62: *>          ALPHA is COMPLEX*16
   63: *>           On entry, ALPHA specifies the scalar alpha.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] X
   67: *> \verbatim
   68: *>          X is COMPLEX*16 array of dimension at least
   69: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
   70: *>           Before entry, the incremented array X must contain the n
   71: *>           element vector x.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] INCX
   75: *> \verbatim
   76: *>          INCX is INTEGER
   77: *>           On entry, INCX specifies the increment for the elements of
   78: *>           X. INCX must not be zero.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] Y
   82: *> \verbatim
   83: *>          Y is COMPLEX*16 array of dimension at least
   84: *>           ( 1 + ( n - 1 )*abs( INCY ) ).
   85: *>           Before entry, the incremented array Y must contain the n
   86: *>           element vector y.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] INCY
   90: *> \verbatim
   91: *>          INCY is INTEGER
   92: *>           On entry, INCY specifies the increment for the elements of
   93: *>           Y. INCY must not be zero.
   94: *> \endverbatim
   95: *>
   96: *> \param[in,out] A
   97: *> \verbatim
   98: *>          A is COMPLEX*16 array of DIMENSION ( LDA, n ).
   99: *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
  100: *>           upper triangular part of the array A must contain the upper
  101: *>           triangular part of the hermitian matrix and the strictly
  102: *>           lower triangular part of A is not referenced. On exit, the
  103: *>           upper triangular part of the array A is overwritten by the
  104: *>           upper triangular part of the updated matrix.
  105: *>           Before entry with UPLO = 'L' or 'l', the leading n by n
  106: *>           lower triangular part of the array A must contain the lower
  107: *>           triangular part of the hermitian matrix and the strictly
  108: *>           upper triangular part of A is not referenced. On exit, the
  109: *>           lower triangular part of the array A is overwritten by the
  110: *>           lower triangular part of the updated matrix.
  111: *>           Note that the imaginary parts of the diagonal elements need
  112: *>           not be set, they are assumed to be zero, and on exit they
  113: *>           are set to zero.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDA
  117: *> \verbatim
  118: *>          LDA is INTEGER
  119: *>           On entry, LDA specifies the first dimension of A as declared
  120: *>           in the calling (sub) program. LDA must be at least
  121: *>           max( 1, n ).
  122: *> \endverbatim
  123: *
  124: *  Authors:
  125: *  ========
  126: *
  127: *> \author Univ. of Tennessee 
  128: *> \author Univ. of California Berkeley 
  129: *> \author Univ. of Colorado Denver 
  130: *> \author NAG Ltd. 
  131: *
  132: *> \date November 2011
  133: *
  134: *> \ingroup complex16_blas_level2
  135: *
  136: *> \par Further Details:
  137: *  =====================
  138: *>
  139: *> \verbatim
  140: *>
  141: *>  Level 2 Blas routine.
  142: *>
  143: *>  -- Written on 22-October-1986.
  144: *>     Jack Dongarra, Argonne National Lab.
  145: *>     Jeremy Du Croz, Nag Central Office.
  146: *>     Sven Hammarling, Nag Central Office.
  147: *>     Richard Hanson, Sandia National Labs.
  148: *> \endverbatim
  149: *>
  150: *  =====================================================================
  151:       SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
  152: *
  153: *  -- Reference BLAS level2 routine (version 3.4.0) --
  154: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  155: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156: *     November 2011
  157: *
  158: *     .. Scalar Arguments ..
  159:       COMPLEX*16 ALPHA
  160:       INTEGER INCX,INCY,LDA,N
  161:       CHARACTER UPLO
  162: *     ..
  163: *     .. Array Arguments ..
  164:       COMPLEX*16 A(LDA,*),X(*),Y(*)
  165: *     ..
  166: *
  167: *  =====================================================================
  168: *
  169: *     .. Parameters ..
  170:       COMPLEX*16 ZERO
  171:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  172: *     ..
  173: *     .. Local Scalars ..
  174:       COMPLEX*16 TEMP1,TEMP2
  175:       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
  176: *     ..
  177: *     .. External Functions ..
  178:       LOGICAL LSAME
  179:       EXTERNAL LSAME
  180: *     ..
  181: *     .. External Subroutines ..
  182:       EXTERNAL XERBLA
  183: *     ..
  184: *     .. Intrinsic Functions ..
  185:       INTRINSIC DBLE,DCONJG,MAX
  186: *     ..
  187: *
  188: *     Test the input parameters.
  189: *
  190:       INFO = 0
  191:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  192:           INFO = 1
  193:       ELSE IF (N.LT.0) THEN
  194:           INFO = 2
  195:       ELSE IF (INCX.EQ.0) THEN
  196:           INFO = 5
  197:       ELSE IF (INCY.EQ.0) THEN
  198:           INFO = 7
  199:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  200:           INFO = 9
  201:       END IF
  202:       IF (INFO.NE.0) THEN
  203:           CALL XERBLA('ZHER2 ',INFO)
  204:           RETURN
  205:       END IF
  206: *
  207: *     Quick return if possible.
  208: *
  209:       IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
  210: *
  211: *     Set up the start points in X and Y if the increments are not both
  212: *     unity.
  213: *
  214:       IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
  215:           IF (INCX.GT.0) THEN
  216:               KX = 1
  217:           ELSE
  218:               KX = 1 - (N-1)*INCX
  219:           END IF
  220:           IF (INCY.GT.0) THEN
  221:               KY = 1
  222:           ELSE
  223:               KY = 1 - (N-1)*INCY
  224:           END IF
  225:           JX = KX
  226:           JY = KY
  227:       END IF
  228: *
  229: *     Start the operations. In this version the elements of A are
  230: *     accessed sequentially with one pass through the triangular part
  231: *     of A.
  232: *
  233:       IF (LSAME(UPLO,'U')) THEN
  234: *
  235: *        Form  A  when A is stored in the upper triangle.
  236: *
  237:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  238:               DO 20 J = 1,N
  239:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  240:                       TEMP1 = ALPHA*DCONJG(Y(J))
  241:                       TEMP2 = DCONJG(ALPHA*X(J))
  242:                       DO 10 I = 1,J - 1
  243:                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
  244:    10                 CONTINUE
  245:                       A(J,J) = DBLE(A(J,J)) +
  246:      +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
  247:                   ELSE
  248:                       A(J,J) = DBLE(A(J,J))
  249:                   END IF
  250:    20         CONTINUE
  251:           ELSE
  252:               DO 40 J = 1,N
  253:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  254:                       TEMP1 = ALPHA*DCONJG(Y(JY))
  255:                       TEMP2 = DCONJG(ALPHA*X(JX))
  256:                       IX = KX
  257:                       IY = KY
  258:                       DO 30 I = 1,J - 1
  259:                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
  260:                           IX = IX + INCX
  261:                           IY = IY + INCY
  262:    30                 CONTINUE
  263:                       A(J,J) = DBLE(A(J,J)) +
  264:      +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
  265:                   ELSE
  266:                       A(J,J) = DBLE(A(J,J))
  267:                   END IF
  268:                   JX = JX + INCX
  269:                   JY = JY + INCY
  270:    40         CONTINUE
  271:           END IF
  272:       ELSE
  273: *
  274: *        Form  A  when A is stored in the lower triangle.
  275: *
  276:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  277:               DO 60 J = 1,N
  278:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  279:                       TEMP1 = ALPHA*DCONJG(Y(J))
  280:                       TEMP2 = DCONJG(ALPHA*X(J))
  281:                       A(J,J) = DBLE(A(J,J)) +
  282:      +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
  283:                       DO 50 I = J + 1,N
  284:                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
  285:    50                 CONTINUE
  286:                   ELSE
  287:                       A(J,J) = DBLE(A(J,J))
  288:                   END IF
  289:    60         CONTINUE
  290:           ELSE
  291:               DO 80 J = 1,N
  292:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  293:                       TEMP1 = ALPHA*DCONJG(Y(JY))
  294:                       TEMP2 = DCONJG(ALPHA*X(JX))
  295:                       A(J,J) = DBLE(A(J,J)) +
  296:      +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
  297:                       IX = JX
  298:                       IY = JY
  299:                       DO 70 I = J + 1,N
  300:                           IX = IX + INCX
  301:                           IY = IY + INCY
  302:                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
  303:    70                 CONTINUE
  304:                   ELSE
  305:                       A(J,J) = DBLE(A(J,J))
  306:                   END IF
  307:                   JX = JX + INCX
  308:                   JY = JY + INCY
  309:    80         CONTINUE
  310:           END IF
  311:       END IF
  312: *
  313:       RETURN
  314: *
  315: *     End of ZHER2 .
  316: *
  317:       END

CVSweb interface <joel.bertrand@systella.fr>