File:  [local] / rpl / lapack / blas / zher2.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:45 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHER2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
   12: *
   13: *       .. Scalar Arguments ..
   14: *       COMPLEX*16 ALPHA
   15: *       INTEGER INCX,INCY,LDA,N
   16: *       CHARACTER UPLO
   17: *       ..
   18: *       .. Array Arguments ..
   19: *       COMPLEX*16 A(LDA,*),X(*),Y(*)
   20: *       ..
   21: *
   22: *
   23: *> \par Purpose:
   24: *  =============
   25: *>
   26: *> \verbatim
   27: *>
   28: *> ZHER2  performs the hermitian rank 2 operation
   29: *>
   30: *>    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
   31: *>
   32: *> where alpha is a scalar, x and y are n element vectors and A is an n
   33: *> by n hermitian matrix.
   34: *> \endverbatim
   35: *
   36: *  Arguments:
   37: *  ==========
   38: *
   39: *> \param[in] UPLO
   40: *> \verbatim
   41: *>          UPLO is CHARACTER*1
   42: *>           On entry, UPLO specifies whether the upper or lower
   43: *>           triangular part of the array A is to be referenced as
   44: *>           follows:
   45: *>
   46: *>              UPLO = 'U' or 'u'   Only the upper triangular part of A
   47: *>                                  is to be referenced.
   48: *>
   49: *>              UPLO = 'L' or 'l'   Only the lower triangular part of A
   50: *>                                  is to be referenced.
   51: *> \endverbatim
   52: *>
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>           On entry, N specifies the order of the matrix A.
   57: *>           N must be at least zero.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] ALPHA
   61: *> \verbatim
   62: *>          ALPHA is COMPLEX*16
   63: *>           On entry, ALPHA specifies the scalar alpha.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] X
   67: *> \verbatim
   68: *>          X is COMPLEX*16 array, dimension at least
   69: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
   70: *>           Before entry, the incremented array X must contain the n
   71: *>           element vector x.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] INCX
   75: *> \verbatim
   76: *>          INCX is INTEGER
   77: *>           On entry, INCX specifies the increment for the elements of
   78: *>           X. INCX must not be zero.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] Y
   82: *> \verbatim
   83: *>          Y is COMPLEX*16 array, dimension at least
   84: *>           ( 1 + ( n - 1 )*abs( INCY ) ).
   85: *>           Before entry, the incremented array Y must contain the n
   86: *>           element vector y.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] INCY
   90: *> \verbatim
   91: *>          INCY is INTEGER
   92: *>           On entry, INCY specifies the increment for the elements of
   93: *>           Y. INCY must not be zero.
   94: *> \endverbatim
   95: *>
   96: *> \param[in,out] A
   97: *> \verbatim
   98: *>          A is COMPLEX*16 array, dimension ( LDA, N )
   99: *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
  100: *>           upper triangular part of the array A must contain the upper
  101: *>           triangular part of the hermitian matrix and the strictly
  102: *>           lower triangular part of A is not referenced. On exit, the
  103: *>           upper triangular part of the array A is overwritten by the
  104: *>           upper triangular part of the updated matrix.
  105: *>           Before entry with UPLO = 'L' or 'l', the leading n by n
  106: *>           lower triangular part of the array A must contain the lower
  107: *>           triangular part of the hermitian matrix and the strictly
  108: *>           upper triangular part of A is not referenced. On exit, the
  109: *>           lower triangular part of the array A is overwritten by the
  110: *>           lower triangular part of the updated matrix.
  111: *>           Note that the imaginary parts of the diagonal elements need
  112: *>           not be set, they are assumed to be zero, and on exit they
  113: *>           are set to zero.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDA
  117: *> \verbatim
  118: *>          LDA is INTEGER
  119: *>           On entry, LDA specifies the first dimension of A as declared
  120: *>           in the calling (sub) program. LDA must be at least
  121: *>           max( 1, n ).
  122: *> \endverbatim
  123: *
  124: *  Authors:
  125: *  ========
  126: *
  127: *> \author Univ. of Tennessee
  128: *> \author Univ. of California Berkeley
  129: *> \author Univ. of Colorado Denver
  130: *> \author NAG Ltd.
  131: *
  132: *> \ingroup complex16_blas_level2
  133: *
  134: *> \par Further Details:
  135: *  =====================
  136: *>
  137: *> \verbatim
  138: *>
  139: *>  Level 2 Blas routine.
  140: *>
  141: *>  -- Written on 22-October-1986.
  142: *>     Jack Dongarra, Argonne National Lab.
  143: *>     Jeremy Du Croz, Nag Central Office.
  144: *>     Sven Hammarling, Nag Central Office.
  145: *>     Richard Hanson, Sandia National Labs.
  146: *> \endverbatim
  147: *>
  148: *  =====================================================================
  149:       SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
  150: *
  151: *  -- Reference BLAS level2 routine --
  152: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  153: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  154: *
  155: *     .. Scalar Arguments ..
  156:       COMPLEX*16 ALPHA
  157:       INTEGER INCX,INCY,LDA,N
  158:       CHARACTER UPLO
  159: *     ..
  160: *     .. Array Arguments ..
  161:       COMPLEX*16 A(LDA,*),X(*),Y(*)
  162: *     ..
  163: *
  164: *  =====================================================================
  165: *
  166: *     .. Parameters ..
  167:       COMPLEX*16 ZERO
  168:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  169: *     ..
  170: *     .. Local Scalars ..
  171:       COMPLEX*16 TEMP1,TEMP2
  172:       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
  173: *     ..
  174: *     .. External Functions ..
  175:       LOGICAL LSAME
  176:       EXTERNAL LSAME
  177: *     ..
  178: *     .. External Subroutines ..
  179:       EXTERNAL XERBLA
  180: *     ..
  181: *     .. Intrinsic Functions ..
  182:       INTRINSIC DBLE,DCONJG,MAX
  183: *     ..
  184: *
  185: *     Test the input parameters.
  186: *
  187:       INFO = 0
  188:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  189:           INFO = 1
  190:       ELSE IF (N.LT.0) THEN
  191:           INFO = 2
  192:       ELSE IF (INCX.EQ.0) THEN
  193:           INFO = 5
  194:       ELSE IF (INCY.EQ.0) THEN
  195:           INFO = 7
  196:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  197:           INFO = 9
  198:       END IF
  199:       IF (INFO.NE.0) THEN
  200:           CALL XERBLA('ZHER2 ',INFO)
  201:           RETURN
  202:       END IF
  203: *
  204: *     Quick return if possible.
  205: *
  206:       IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
  207: *
  208: *     Set up the start points in X and Y if the increments are not both
  209: *     unity.
  210: *
  211:       IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
  212:           IF (INCX.GT.0) THEN
  213:               KX = 1
  214:           ELSE
  215:               KX = 1 - (N-1)*INCX
  216:           END IF
  217:           IF (INCY.GT.0) THEN
  218:               KY = 1
  219:           ELSE
  220:               KY = 1 - (N-1)*INCY
  221:           END IF
  222:           JX = KX
  223:           JY = KY
  224:       END IF
  225: *
  226: *     Start the operations. In this version the elements of A are
  227: *     accessed sequentially with one pass through the triangular part
  228: *     of A.
  229: *
  230:       IF (LSAME(UPLO,'U')) THEN
  231: *
  232: *        Form  A  when A is stored in the upper triangle.
  233: *
  234:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  235:               DO 20 J = 1,N
  236:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  237:                       TEMP1 = ALPHA*DCONJG(Y(J))
  238:                       TEMP2 = DCONJG(ALPHA*X(J))
  239:                       DO 10 I = 1,J - 1
  240:                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
  241:    10                 CONTINUE
  242:                       A(J,J) = DBLE(A(J,J)) +
  243:      +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
  244:                   ELSE
  245:                       A(J,J) = DBLE(A(J,J))
  246:                   END IF
  247:    20         CONTINUE
  248:           ELSE
  249:               DO 40 J = 1,N
  250:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  251:                       TEMP1 = ALPHA*DCONJG(Y(JY))
  252:                       TEMP2 = DCONJG(ALPHA*X(JX))
  253:                       IX = KX
  254:                       IY = KY
  255:                       DO 30 I = 1,J - 1
  256:                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
  257:                           IX = IX + INCX
  258:                           IY = IY + INCY
  259:    30                 CONTINUE
  260:                       A(J,J) = DBLE(A(J,J)) +
  261:      +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
  262:                   ELSE
  263:                       A(J,J) = DBLE(A(J,J))
  264:                   END IF
  265:                   JX = JX + INCX
  266:                   JY = JY + INCY
  267:    40         CONTINUE
  268:           END IF
  269:       ELSE
  270: *
  271: *        Form  A  when A is stored in the lower triangle.
  272: *
  273:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  274:               DO 60 J = 1,N
  275:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  276:                       TEMP1 = ALPHA*DCONJG(Y(J))
  277:                       TEMP2 = DCONJG(ALPHA*X(J))
  278:                       A(J,J) = DBLE(A(J,J)) +
  279:      +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
  280:                       DO 50 I = J + 1,N
  281:                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
  282:    50                 CONTINUE
  283:                   ELSE
  284:                       A(J,J) = DBLE(A(J,J))
  285:                   END IF
  286:    60         CONTINUE
  287:           ELSE
  288:               DO 80 J = 1,N
  289:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  290:                       TEMP1 = ALPHA*DCONJG(Y(JY))
  291:                       TEMP2 = DCONJG(ALPHA*X(JX))
  292:                       A(J,J) = DBLE(A(J,J)) +
  293:      +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
  294:                       IX = JX
  295:                       IY = JY
  296:                       DO 70 I = J + 1,N
  297:                           IX = IX + INCX
  298:                           IY = IY + INCY
  299:                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
  300:    70                 CONTINUE
  301:                   ELSE
  302:                       A(J,J) = DBLE(A(J,J))
  303:                   END IF
  304:                   JX = JX + INCX
  305:                   JY = JY + INCY
  306:    80         CONTINUE
  307:           END IF
  308:       END IF
  309: *
  310:       RETURN
  311: *
  312: *     End of ZHER2
  313: *
  314:       END

CVSweb interface <joel.bertrand@systella.fr>