File:  [local] / rpl / lapack / blas / zher.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:03 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE PRECISION ALPHA
    4:       INTEGER INCX,LDA,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE COMPLEX A(LDA,*),X(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  ZHER   performs the hermitian rank 1 operation
   15: *
   16: *     A := alpha*x*x**H + A,
   17: *
   18: *  where alpha is a real scalar, x is an n element vector and A is an
   19: *  n by n hermitian matrix.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the array A is to be referenced as
   27: *           follows:
   28: *
   29: *              UPLO = 'U' or 'u'   Only the upper triangular part of A
   30: *                                  is to be referenced.
   31: *
   32: *              UPLO = 'L' or 'l'   Only the lower triangular part of A
   33: *                                  is to be referenced.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  ALPHA  - DOUBLE PRECISION.
   43: *           On entry, ALPHA specifies the scalar alpha.
   44: *           Unchanged on exit.
   45: *
   46: *  X      - COMPLEX*16       array of dimension at least
   47: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   48: *           Before entry, the incremented array X must contain the n
   49: *           element vector x.
   50: *           Unchanged on exit.
   51: *
   52: *  INCX   - INTEGER.
   53: *           On entry, INCX specifies the increment for the elements of
   54: *           X. INCX must not be zero.
   55: *           Unchanged on exit.
   56: *
   57: *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
   58: *           Before entry with  UPLO = 'U' or 'u', the leading n by n
   59: *           upper triangular part of the array A must contain the upper
   60: *           triangular part of the hermitian matrix and the strictly
   61: *           lower triangular part of A is not referenced. On exit, the
   62: *           upper triangular part of the array A is overwritten by the
   63: *           upper triangular part of the updated matrix.
   64: *           Before entry with UPLO = 'L' or 'l', the leading n by n
   65: *           lower triangular part of the array A must contain the lower
   66: *           triangular part of the hermitian matrix and the strictly
   67: *           upper triangular part of A is not referenced. On exit, the
   68: *           lower triangular part of the array A is overwritten by the
   69: *           lower triangular part of the updated matrix.
   70: *           Note that the imaginary parts of the diagonal elements need
   71: *           not be set, they are assumed to be zero, and on exit they
   72: *           are set to zero.
   73: *
   74: *  LDA    - INTEGER.
   75: *           On entry, LDA specifies the first dimension of A as declared
   76: *           in the calling (sub) program. LDA must be at least
   77: *           max( 1, n ).
   78: *           Unchanged on exit.
   79: *
   80: *  Further Details
   81: *  ===============
   82: *
   83: *  Level 2 Blas routine.
   84: *
   85: *  -- Written on 22-October-1986.
   86: *     Jack Dongarra, Argonne National Lab.
   87: *     Jeremy Du Croz, Nag Central Office.
   88: *     Sven Hammarling, Nag Central Office.
   89: *     Richard Hanson, Sandia National Labs.
   90: *
   91: *  =====================================================================
   92: *
   93: *     .. Parameters ..
   94:       DOUBLE COMPLEX ZERO
   95:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
   96: *     ..
   97: *     .. Local Scalars ..
   98:       DOUBLE COMPLEX TEMP
   99:       INTEGER I,INFO,IX,J,JX,KX
  100: *     ..
  101: *     .. External Functions ..
  102:       LOGICAL LSAME
  103:       EXTERNAL LSAME
  104: *     ..
  105: *     .. External Subroutines ..
  106:       EXTERNAL XERBLA
  107: *     ..
  108: *     .. Intrinsic Functions ..
  109:       INTRINSIC DBLE,DCONJG,MAX
  110: *     ..
  111: *
  112: *     Test the input parameters.
  113: *
  114:       INFO = 0
  115:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  116:           INFO = 1
  117:       ELSE IF (N.LT.0) THEN
  118:           INFO = 2
  119:       ELSE IF (INCX.EQ.0) THEN
  120:           INFO = 5
  121:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  122:           INFO = 7
  123:       END IF
  124:       IF (INFO.NE.0) THEN
  125:           CALL XERBLA('ZHER  ',INFO)
  126:           RETURN
  127:       END IF
  128: *
  129: *     Quick return if possible.
  130: *
  131:       IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN
  132: *
  133: *     Set the start point in X if the increment is not unity.
  134: *
  135:       IF (INCX.LE.0) THEN
  136:           KX = 1 - (N-1)*INCX
  137:       ELSE IF (INCX.NE.1) THEN
  138:           KX = 1
  139:       END IF
  140: *
  141: *     Start the operations. In this version the elements of A are
  142: *     accessed sequentially with one pass through the triangular part
  143: *     of A.
  144: *
  145:       IF (LSAME(UPLO,'U')) THEN
  146: *
  147: *        Form  A  when A is stored in upper triangle.
  148: *
  149:           IF (INCX.EQ.1) THEN
  150:               DO 20 J = 1,N
  151:                   IF (X(J).NE.ZERO) THEN
  152:                       TEMP = ALPHA*DCONJG(X(J))
  153:                       DO 10 I = 1,J - 1
  154:                           A(I,J) = A(I,J) + X(I)*TEMP
  155:    10                 CONTINUE
  156:                       A(J,J) = DBLE(A(J,J)) + DBLE(X(J)*TEMP)
  157:                   ELSE
  158:                       A(J,J) = DBLE(A(J,J))
  159:                   END IF
  160:    20         CONTINUE
  161:           ELSE
  162:               JX = KX
  163:               DO 40 J = 1,N
  164:                   IF (X(JX).NE.ZERO) THEN
  165:                       TEMP = ALPHA*DCONJG(X(JX))
  166:                       IX = KX
  167:                       DO 30 I = 1,J - 1
  168:                           A(I,J) = A(I,J) + X(IX)*TEMP
  169:                           IX = IX + INCX
  170:    30                 CONTINUE
  171:                       A(J,J) = DBLE(A(J,J)) + DBLE(X(JX)*TEMP)
  172:                   ELSE
  173:                       A(J,J) = DBLE(A(J,J))
  174:                   END IF
  175:                   JX = JX + INCX
  176:    40         CONTINUE
  177:           END IF
  178:       ELSE
  179: *
  180: *        Form  A  when A is stored in lower triangle.
  181: *
  182:           IF (INCX.EQ.1) THEN
  183:               DO 60 J = 1,N
  184:                   IF (X(J).NE.ZERO) THEN
  185:                       TEMP = ALPHA*DCONJG(X(J))
  186:                       A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(J))
  187:                       DO 50 I = J + 1,N
  188:                           A(I,J) = A(I,J) + X(I)*TEMP
  189:    50                 CONTINUE
  190:                   ELSE
  191:                       A(J,J) = DBLE(A(J,J))
  192:                   END IF
  193:    60         CONTINUE
  194:           ELSE
  195:               JX = KX
  196:               DO 80 J = 1,N
  197:                   IF (X(JX).NE.ZERO) THEN
  198:                       TEMP = ALPHA*DCONJG(X(JX))
  199:                       A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(JX))
  200:                       IX = JX
  201:                       DO 70 I = J + 1,N
  202:                           IX = IX + INCX
  203:                           A(I,J) = A(I,J) + X(IX)*TEMP
  204:    70                 CONTINUE
  205:                   ELSE
  206:                       A(J,J) = DBLE(A(J,J))
  207:                   END IF
  208:                   JX = JX + INCX
  209:    80         CONTINUE
  210:           END IF
  211:       END IF
  212: *
  213:       RETURN
  214: *
  215: *     End of ZHER  .
  216: *
  217:       END

CVSweb interface <joel.bertrand@systella.fr>