Annotation of rpl/lapack/blas/zher.f, revision 1.16

1.8       bertrand    1: *> \brief \b ZHER
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.13      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *  Definition:
                      9: *  ===========
                     10: *
                     11: *       SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA)
1.13      bertrand   12: *
1.8       bertrand   13: *       .. Scalar Arguments ..
                     14: *       DOUBLE PRECISION ALPHA
                     15: *       INTEGER INCX,LDA,N
                     16: *       CHARACTER UPLO
                     17: *       ..
                     18: *       .. Array Arguments ..
                     19: *       COMPLEX*16 A(LDA,*),X(*)
                     20: *       ..
1.13      bertrand   21: *
1.8       bertrand   22: *
                     23: *> \par Purpose:
                     24: *  =============
                     25: *>
                     26: *> \verbatim
                     27: *>
                     28: *> ZHER   performs the hermitian rank 1 operation
                     29: *>
                     30: *>    A := alpha*x*x**H + A,
                     31: *>
                     32: *> where alpha is a real scalar, x is an n element vector and A is an
                     33: *> n by n hermitian matrix.
                     34: *> \endverbatim
                     35: *
                     36: *  Arguments:
                     37: *  ==========
                     38: *
                     39: *> \param[in] UPLO
                     40: *> \verbatim
                     41: *>          UPLO is CHARACTER*1
                     42: *>           On entry, UPLO specifies whether the upper or lower
                     43: *>           triangular part of the array A is to be referenced as
                     44: *>           follows:
                     45: *>
                     46: *>              UPLO = 'U' or 'u'   Only the upper triangular part of A
                     47: *>                                  is to be referenced.
                     48: *>
                     49: *>              UPLO = 'L' or 'l'   Only the lower triangular part of A
                     50: *>                                  is to be referenced.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>           On entry, N specifies the order of the matrix A.
                     57: *>           N must be at least zero.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] ALPHA
                     61: *> \verbatim
                     62: *>          ALPHA is DOUBLE PRECISION.
                     63: *>           On entry, ALPHA specifies the scalar alpha.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] X
                     67: *> \verbatim
1.14      bertrand   68: *>          X is COMPLEX*16 array, dimension at least
1.8       bertrand   69: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
                     70: *>           Before entry, the incremented array X must contain the n
                     71: *>           element vector x.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] INCX
                     75: *> \verbatim
                     76: *>          INCX is INTEGER
                     77: *>           On entry, INCX specifies the increment for the elements of
                     78: *>           X. INCX must not be zero.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in,out] A
                     82: *> \verbatim
1.14      bertrand   83: *>          A is COMPLEX*16 array, dimension ( LDA, N )
1.8       bertrand   84: *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
                     85: *>           upper triangular part of the array A must contain the upper
                     86: *>           triangular part of the hermitian matrix and the strictly
                     87: *>           lower triangular part of A is not referenced. On exit, the
                     88: *>           upper triangular part of the array A is overwritten by the
                     89: *>           upper triangular part of the updated matrix.
                     90: *>           Before entry with UPLO = 'L' or 'l', the leading n by n
                     91: *>           lower triangular part of the array A must contain the lower
                     92: *>           triangular part of the hermitian matrix and the strictly
                     93: *>           upper triangular part of A is not referenced. On exit, the
                     94: *>           lower triangular part of the array A is overwritten by the
                     95: *>           lower triangular part of the updated matrix.
                     96: *>           Note that the imaginary parts of the diagonal elements need
                     97: *>           not be set, they are assumed to be zero, and on exit they
                     98: *>           are set to zero.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] LDA
                    102: *> \verbatim
                    103: *>          LDA is INTEGER
                    104: *>           On entry, LDA specifies the first dimension of A as declared
                    105: *>           in the calling (sub) program. LDA must be at least
                    106: *>           max( 1, n ).
                    107: *> \endverbatim
                    108: *
                    109: *  Authors:
                    110: *  ========
                    111: *
1.13      bertrand  112: *> \author Univ. of Tennessee
                    113: *> \author Univ. of California Berkeley
                    114: *> \author Univ. of Colorado Denver
                    115: *> \author NAG Ltd.
1.8       bertrand  116: *
                    117: *> \ingroup complex16_blas_level2
                    118: *
                    119: *> \par Further Details:
                    120: *  =====================
                    121: *>
                    122: *> \verbatim
                    123: *>
                    124: *>  Level 2 Blas routine.
                    125: *>
                    126: *>  -- Written on 22-October-1986.
                    127: *>     Jack Dongarra, Argonne National Lab.
                    128: *>     Jeremy Du Croz, Nag Central Office.
                    129: *>     Sven Hammarling, Nag Central Office.
                    130: *>     Richard Hanson, Sandia National Labs.
                    131: *> \endverbatim
                    132: *>
                    133: *  =====================================================================
1.1       bertrand  134:       SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA)
1.8       bertrand  135: *
1.16    ! bertrand  136: *  -- Reference BLAS level2 routine --
1.8       bertrand  137: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
                    138: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    139: *
1.1       bertrand  140: *     .. Scalar Arguments ..
                    141:       DOUBLE PRECISION ALPHA
                    142:       INTEGER INCX,LDA,N
                    143:       CHARACTER UPLO
                    144: *     ..
                    145: *     .. Array Arguments ..
1.8       bertrand  146:       COMPLEX*16 A(LDA,*),X(*)
1.1       bertrand  147: *     ..
                    148: *
                    149: *  =====================================================================
                    150: *
                    151: *     .. Parameters ..
1.8       bertrand  152:       COMPLEX*16 ZERO
1.1       bertrand  153:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
                    154: *     ..
                    155: *     .. Local Scalars ..
1.8       bertrand  156:       COMPLEX*16 TEMP
1.1       bertrand  157:       INTEGER I,INFO,IX,J,JX,KX
                    158: *     ..
                    159: *     .. External Functions ..
                    160:       LOGICAL LSAME
                    161:       EXTERNAL LSAME
                    162: *     ..
                    163: *     .. External Subroutines ..
                    164:       EXTERNAL XERBLA
                    165: *     ..
                    166: *     .. Intrinsic Functions ..
                    167:       INTRINSIC DBLE,DCONJG,MAX
                    168: *     ..
                    169: *
                    170: *     Test the input parameters.
                    171: *
                    172:       INFO = 0
                    173:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
                    174:           INFO = 1
                    175:       ELSE IF (N.LT.0) THEN
                    176:           INFO = 2
                    177:       ELSE IF (INCX.EQ.0) THEN
                    178:           INFO = 5
                    179:       ELSE IF (LDA.LT.MAX(1,N)) THEN
                    180:           INFO = 7
                    181:       END IF
                    182:       IF (INFO.NE.0) THEN
                    183:           CALL XERBLA('ZHER  ',INFO)
                    184:           RETURN
                    185:       END IF
                    186: *
                    187: *     Quick return if possible.
                    188: *
                    189:       IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN
                    190: *
                    191: *     Set the start point in X if the increment is not unity.
                    192: *
                    193:       IF (INCX.LE.0) THEN
                    194:           KX = 1 - (N-1)*INCX
                    195:       ELSE IF (INCX.NE.1) THEN
                    196:           KX = 1
                    197:       END IF
                    198: *
                    199: *     Start the operations. In this version the elements of A are
                    200: *     accessed sequentially with one pass through the triangular part
                    201: *     of A.
                    202: *
                    203:       IF (LSAME(UPLO,'U')) THEN
                    204: *
                    205: *        Form  A  when A is stored in upper triangle.
                    206: *
                    207:           IF (INCX.EQ.1) THEN
                    208:               DO 20 J = 1,N
                    209:                   IF (X(J).NE.ZERO) THEN
                    210:                       TEMP = ALPHA*DCONJG(X(J))
                    211:                       DO 10 I = 1,J - 1
                    212:                           A(I,J) = A(I,J) + X(I)*TEMP
                    213:    10                 CONTINUE
                    214:                       A(J,J) = DBLE(A(J,J)) + DBLE(X(J)*TEMP)
                    215:                   ELSE
                    216:                       A(J,J) = DBLE(A(J,J))
                    217:                   END IF
                    218:    20         CONTINUE
                    219:           ELSE
                    220:               JX = KX
                    221:               DO 40 J = 1,N
                    222:                   IF (X(JX).NE.ZERO) THEN
                    223:                       TEMP = ALPHA*DCONJG(X(JX))
                    224:                       IX = KX
                    225:                       DO 30 I = 1,J - 1
                    226:                           A(I,J) = A(I,J) + X(IX)*TEMP
                    227:                           IX = IX + INCX
                    228:    30                 CONTINUE
                    229:                       A(J,J) = DBLE(A(J,J)) + DBLE(X(JX)*TEMP)
                    230:                   ELSE
                    231:                       A(J,J) = DBLE(A(J,J))
                    232:                   END IF
                    233:                   JX = JX + INCX
                    234:    40         CONTINUE
                    235:           END IF
                    236:       ELSE
                    237: *
                    238: *        Form  A  when A is stored in lower triangle.
                    239: *
                    240:           IF (INCX.EQ.1) THEN
                    241:               DO 60 J = 1,N
                    242:                   IF (X(J).NE.ZERO) THEN
                    243:                       TEMP = ALPHA*DCONJG(X(J))
                    244:                       A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(J))
                    245:                       DO 50 I = J + 1,N
                    246:                           A(I,J) = A(I,J) + X(I)*TEMP
                    247:    50                 CONTINUE
                    248:                   ELSE
                    249:                       A(J,J) = DBLE(A(J,J))
                    250:                   END IF
                    251:    60         CONTINUE
                    252:           ELSE
                    253:               JX = KX
                    254:               DO 80 J = 1,N
                    255:                   IF (X(JX).NE.ZERO) THEN
                    256:                       TEMP = ALPHA*DCONJG(X(JX))
                    257:                       A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(JX))
                    258:                       IX = JX
                    259:                       DO 70 I = J + 1,N
                    260:                           IX = IX + INCX
                    261:                           A(I,J) = A(I,J) + X(IX)*TEMP
                    262:    70                 CONTINUE
                    263:                   ELSE
                    264:                       A(J,J) = DBLE(A(J,J))
                    265:                   END IF
                    266:                   JX = JX + INCX
                    267:    80         CONTINUE
                    268:           END IF
                    269:       END IF
                    270: *
                    271:       RETURN
                    272: *
1.16    ! bertrand  273: *     End of ZHER
1.1       bertrand  274: *
                    275:       END

CVSweb interface <joel.bertrand@systella.fr>