File:  [local] / rpl / lapack / blas / zhemv.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:03 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE COMPLEX ALPHA,BETA
    4:       INTEGER INCX,INCY,LDA,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  ZHEMV  performs the matrix-vector  operation
   15: *
   16: *     y := alpha*A*x + beta*y,
   17: *
   18: *  where alpha and beta are scalars, x and y are n element vectors and
   19: *  A is an n by n hermitian matrix.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the array A is to be referenced as
   27: *           follows:
   28: *
   29: *              UPLO = 'U' or 'u'   Only the upper triangular part of A
   30: *                                  is to be referenced.
   31: *
   32: *              UPLO = 'L' or 'l'   Only the lower triangular part of A
   33: *                                  is to be referenced.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  ALPHA  - COMPLEX*16      .
   43: *           On entry, ALPHA specifies the scalar alpha.
   44: *           Unchanged on exit.
   45: *
   46: *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
   47: *           Before entry with  UPLO = 'U' or 'u', the leading n by n
   48: *           upper triangular part of the array A must contain the upper
   49: *           triangular part of the hermitian matrix and the strictly
   50: *           lower triangular part of A is not referenced.
   51: *           Before entry with UPLO = 'L' or 'l', the leading n by n
   52: *           lower triangular part of the array A must contain the lower
   53: *           triangular part of the hermitian matrix and the strictly
   54: *           upper triangular part of A is not referenced.
   55: *           Note that the imaginary parts of the diagonal elements need
   56: *           not be set and are assumed to be zero.
   57: *           Unchanged on exit.
   58: *
   59: *  LDA    - INTEGER.
   60: *           On entry, LDA specifies the first dimension of A as declared
   61: *           in the calling (sub) program. LDA must be at least
   62: *           max( 1, n ).
   63: *           Unchanged on exit.
   64: *
   65: *  X      - COMPLEX*16       array of dimension at least
   66: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   67: *           Before entry, the incremented array X must contain the n
   68: *           element vector x.
   69: *           Unchanged on exit.
   70: *
   71: *  INCX   - INTEGER.
   72: *           On entry, INCX specifies the increment for the elements of
   73: *           X. INCX must not be zero.
   74: *           Unchanged on exit.
   75: *
   76: *  BETA   - COMPLEX*16      .
   77: *           On entry, BETA specifies the scalar beta. When BETA is
   78: *           supplied as zero then Y need not be set on input.
   79: *           Unchanged on exit.
   80: *
   81: *  Y      - COMPLEX*16       array of dimension at least
   82: *           ( 1 + ( n - 1 )*abs( INCY ) ).
   83: *           Before entry, the incremented array Y must contain the n
   84: *           element vector y. On exit, Y is overwritten by the updated
   85: *           vector y.
   86: *
   87: *  INCY   - INTEGER.
   88: *           On entry, INCY specifies the increment for the elements of
   89: *           Y. INCY must not be zero.
   90: *           Unchanged on exit.
   91: *
   92: *  Further Details
   93: *  ===============
   94: *
   95: *  Level 2 Blas routine.
   96: *  The vector and matrix arguments are not referenced when N = 0, or M = 0
   97: *
   98: *  -- Written on 22-October-1986.
   99: *     Jack Dongarra, Argonne National Lab.
  100: *     Jeremy Du Croz, Nag Central Office.
  101: *     Sven Hammarling, Nag Central Office.
  102: *     Richard Hanson, Sandia National Labs.
  103: *
  104: *  =====================================================================
  105: *
  106: *     .. Parameters ..
  107:       DOUBLE COMPLEX ONE
  108:       PARAMETER (ONE= (1.0D+0,0.0D+0))
  109:       DOUBLE COMPLEX ZERO
  110:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  111: *     ..
  112: *     .. Local Scalars ..
  113:       DOUBLE COMPLEX TEMP1,TEMP2
  114:       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
  115: *     ..
  116: *     .. External Functions ..
  117:       LOGICAL LSAME
  118:       EXTERNAL LSAME
  119: *     ..
  120: *     .. External Subroutines ..
  121:       EXTERNAL XERBLA
  122: *     ..
  123: *     .. Intrinsic Functions ..
  124:       INTRINSIC DBLE,DCONJG,MAX
  125: *     ..
  126: *
  127: *     Test the input parameters.
  128: *
  129:       INFO = 0
  130:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  131:           INFO = 1
  132:       ELSE IF (N.LT.0) THEN
  133:           INFO = 2
  134:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  135:           INFO = 5
  136:       ELSE IF (INCX.EQ.0) THEN
  137:           INFO = 7
  138:       ELSE IF (INCY.EQ.0) THEN
  139:           INFO = 10
  140:       END IF
  141:       IF (INFO.NE.0) THEN
  142:           CALL XERBLA('ZHEMV ',INFO)
  143:           RETURN
  144:       END IF
  145: *
  146: *     Quick return if possible.
  147: *
  148:       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  149: *
  150: *     Set up the start points in  X  and  Y.
  151: *
  152:       IF (INCX.GT.0) THEN
  153:           KX = 1
  154:       ELSE
  155:           KX = 1 - (N-1)*INCX
  156:       END IF
  157:       IF (INCY.GT.0) THEN
  158:           KY = 1
  159:       ELSE
  160:           KY = 1 - (N-1)*INCY
  161:       END IF
  162: *
  163: *     Start the operations. In this version the elements of A are
  164: *     accessed sequentially with one pass through the triangular part
  165: *     of A.
  166: *
  167: *     First form  y := beta*y.
  168: *
  169:       IF (BETA.NE.ONE) THEN
  170:           IF (INCY.EQ.1) THEN
  171:               IF (BETA.EQ.ZERO) THEN
  172:                   DO 10 I = 1,N
  173:                       Y(I) = ZERO
  174:    10             CONTINUE
  175:               ELSE
  176:                   DO 20 I = 1,N
  177:                       Y(I) = BETA*Y(I)
  178:    20             CONTINUE
  179:               END IF
  180:           ELSE
  181:               IY = KY
  182:               IF (BETA.EQ.ZERO) THEN
  183:                   DO 30 I = 1,N
  184:                       Y(IY) = ZERO
  185:                       IY = IY + INCY
  186:    30             CONTINUE
  187:               ELSE
  188:                   DO 40 I = 1,N
  189:                       Y(IY) = BETA*Y(IY)
  190:                       IY = IY + INCY
  191:    40             CONTINUE
  192:               END IF
  193:           END IF
  194:       END IF
  195:       IF (ALPHA.EQ.ZERO) RETURN
  196:       IF (LSAME(UPLO,'U')) THEN
  197: *
  198: *        Form  y  when A is stored in upper triangle.
  199: *
  200:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  201:               DO 60 J = 1,N
  202:                   TEMP1 = ALPHA*X(J)
  203:                   TEMP2 = ZERO
  204:                   DO 50 I = 1,J - 1
  205:                       Y(I) = Y(I) + TEMP1*A(I,J)
  206:                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
  207:    50             CONTINUE
  208:                   Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
  209:    60         CONTINUE
  210:           ELSE
  211:               JX = KX
  212:               JY = KY
  213:               DO 80 J = 1,N
  214:                   TEMP1 = ALPHA*X(JX)
  215:                   TEMP2 = ZERO
  216:                   IX = KX
  217:                   IY = KY
  218:                   DO 70 I = 1,J - 1
  219:                       Y(IY) = Y(IY) + TEMP1*A(I,J)
  220:                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
  221:                       IX = IX + INCX
  222:                       IY = IY + INCY
  223:    70             CONTINUE
  224:                   Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
  225:                   JX = JX + INCX
  226:                   JY = JY + INCY
  227:    80         CONTINUE
  228:           END IF
  229:       ELSE
  230: *
  231: *        Form  y  when A is stored in lower triangle.
  232: *
  233:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  234:               DO 100 J = 1,N
  235:                   TEMP1 = ALPHA*X(J)
  236:                   TEMP2 = ZERO
  237:                   Y(J) = Y(J) + TEMP1*DBLE(A(J,J))
  238:                   DO 90 I = J + 1,N
  239:                       Y(I) = Y(I) + TEMP1*A(I,J)
  240:                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
  241:    90             CONTINUE
  242:                   Y(J) = Y(J) + ALPHA*TEMP2
  243:   100         CONTINUE
  244:           ELSE
  245:               JX = KX
  246:               JY = KY
  247:               DO 120 J = 1,N
  248:                   TEMP1 = ALPHA*X(JX)
  249:                   TEMP2 = ZERO
  250:                   Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J))
  251:                   IX = JX
  252:                   IY = JY
  253:                   DO 110 I = J + 1,N
  254:                       IX = IX + INCX
  255:                       IY = IY + INCY
  256:                       Y(IY) = Y(IY) + TEMP1*A(I,J)
  257:                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
  258:   110             CONTINUE
  259:                   Y(JY) = Y(JY) + ALPHA*TEMP2
  260:                   JX = JX + INCX
  261:                   JY = JY + INCY
  262:   120         CONTINUE
  263:           END IF
  264:       END IF
  265: *
  266:       RETURN
  267: *
  268: *     End of ZHEMV .
  269: *
  270:       END

CVSweb interface <joel.bertrand@systella.fr>