File:  [local] / rpl / lapack / blas / zhemv.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:21 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE COMPLEX ALPHA,BETA
    4:       INTEGER INCX,INCY,LDA,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  ZHEMV  performs the matrix-vector  operation
   15: *
   16: *     y := alpha*A*x + beta*y,
   17: *
   18: *  where alpha and beta are scalars, x and y are n element vectors and
   19: *  A is an n by n hermitian matrix.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the array A is to be referenced as
   27: *           follows:
   28: *
   29: *              UPLO = 'U' or 'u'   Only the upper triangular part of A
   30: *                                  is to be referenced.
   31: *
   32: *              UPLO = 'L' or 'l'   Only the lower triangular part of A
   33: *                                  is to be referenced.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  ALPHA  - COMPLEX*16      .
   43: *           On entry, ALPHA specifies the scalar alpha.
   44: *           Unchanged on exit.
   45: *
   46: *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
   47: *           Before entry with  UPLO = 'U' or 'u', the leading n by n
   48: *           upper triangular part of the array A must contain the upper
   49: *           triangular part of the hermitian matrix and the strictly
   50: *           lower triangular part of A is not referenced.
   51: *           Before entry with UPLO = 'L' or 'l', the leading n by n
   52: *           lower triangular part of the array A must contain the lower
   53: *           triangular part of the hermitian matrix and the strictly
   54: *           upper triangular part of A is not referenced.
   55: *           Note that the imaginary parts of the diagonal elements need
   56: *           not be set and are assumed to be zero.
   57: *           Unchanged on exit.
   58: *
   59: *  LDA    - INTEGER.
   60: *           On entry, LDA specifies the first dimension of A as declared
   61: *           in the calling (sub) program. LDA must be at least
   62: *           max( 1, n ).
   63: *           Unchanged on exit.
   64: *
   65: *  X      - COMPLEX*16       array of dimension at least
   66: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   67: *           Before entry, the incremented array X must contain the n
   68: *           element vector x.
   69: *           Unchanged on exit.
   70: *
   71: *  INCX   - INTEGER.
   72: *           On entry, INCX specifies the increment for the elements of
   73: *           X. INCX must not be zero.
   74: *           Unchanged on exit.
   75: *
   76: *  BETA   - COMPLEX*16      .
   77: *           On entry, BETA specifies the scalar beta. When BETA is
   78: *           supplied as zero then Y need not be set on input.
   79: *           Unchanged on exit.
   80: *
   81: *  Y      - COMPLEX*16       array of dimension at least
   82: *           ( 1 + ( n - 1 )*abs( INCY ) ).
   83: *           Before entry, the incremented array Y must contain the n
   84: *           element vector y. On exit, Y is overwritten by the updated
   85: *           vector y.
   86: *
   87: *  INCY   - INTEGER.
   88: *           On entry, INCY specifies the increment for the elements of
   89: *           Y. INCY must not be zero.
   90: *           Unchanged on exit.
   91: *
   92: *  Further Details
   93: *  ===============
   94: *
   95: *  Level 2 Blas routine.
   96: *
   97: *  -- Written on 22-October-1986.
   98: *     Jack Dongarra, Argonne National Lab.
   99: *     Jeremy Du Croz, Nag Central Office.
  100: *     Sven Hammarling, Nag Central Office.
  101: *     Richard Hanson, Sandia National Labs.
  102: *
  103: *  =====================================================================
  104: *
  105: *     .. Parameters ..
  106:       DOUBLE COMPLEX ONE
  107:       PARAMETER (ONE= (1.0D+0,0.0D+0))
  108:       DOUBLE COMPLEX ZERO
  109:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  110: *     ..
  111: *     .. Local Scalars ..
  112:       DOUBLE COMPLEX TEMP1,TEMP2
  113:       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
  114: *     ..
  115: *     .. External Functions ..
  116:       LOGICAL LSAME
  117:       EXTERNAL LSAME
  118: *     ..
  119: *     .. External Subroutines ..
  120:       EXTERNAL XERBLA
  121: *     ..
  122: *     .. Intrinsic Functions ..
  123:       INTRINSIC DBLE,DCONJG,MAX
  124: *     ..
  125: *
  126: *     Test the input parameters.
  127: *
  128:       INFO = 0
  129:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  130:           INFO = 1
  131:       ELSE IF (N.LT.0) THEN
  132:           INFO = 2
  133:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  134:           INFO = 5
  135:       ELSE IF (INCX.EQ.0) THEN
  136:           INFO = 7
  137:       ELSE IF (INCY.EQ.0) THEN
  138:           INFO = 10
  139:       END IF
  140:       IF (INFO.NE.0) THEN
  141:           CALL XERBLA('ZHEMV ',INFO)
  142:           RETURN
  143:       END IF
  144: *
  145: *     Quick return if possible.
  146: *
  147:       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  148: *
  149: *     Set up the start points in  X  and  Y.
  150: *
  151:       IF (INCX.GT.0) THEN
  152:           KX = 1
  153:       ELSE
  154:           KX = 1 - (N-1)*INCX
  155:       END IF
  156:       IF (INCY.GT.0) THEN
  157:           KY = 1
  158:       ELSE
  159:           KY = 1 - (N-1)*INCY
  160:       END IF
  161: *
  162: *     Start the operations. In this version the elements of A are
  163: *     accessed sequentially with one pass through the triangular part
  164: *     of A.
  165: *
  166: *     First form  y := beta*y.
  167: *
  168:       IF (BETA.NE.ONE) THEN
  169:           IF (INCY.EQ.1) THEN
  170:               IF (BETA.EQ.ZERO) THEN
  171:                   DO 10 I = 1,N
  172:                       Y(I) = ZERO
  173:    10             CONTINUE
  174:               ELSE
  175:                   DO 20 I = 1,N
  176:                       Y(I) = BETA*Y(I)
  177:    20             CONTINUE
  178:               END IF
  179:           ELSE
  180:               IY = KY
  181:               IF (BETA.EQ.ZERO) THEN
  182:                   DO 30 I = 1,N
  183:                       Y(IY) = ZERO
  184:                       IY = IY + INCY
  185:    30             CONTINUE
  186:               ELSE
  187:                   DO 40 I = 1,N
  188:                       Y(IY) = BETA*Y(IY)
  189:                       IY = IY + INCY
  190:    40             CONTINUE
  191:               END IF
  192:           END IF
  193:       END IF
  194:       IF (ALPHA.EQ.ZERO) RETURN
  195:       IF (LSAME(UPLO,'U')) THEN
  196: *
  197: *        Form  y  when A is stored in upper triangle.
  198: *
  199:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  200:               DO 60 J = 1,N
  201:                   TEMP1 = ALPHA*X(J)
  202:                   TEMP2 = ZERO
  203:                   DO 50 I = 1,J - 1
  204:                       Y(I) = Y(I) + TEMP1*A(I,J)
  205:                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
  206:    50             CONTINUE
  207:                   Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
  208:    60         CONTINUE
  209:           ELSE
  210:               JX = KX
  211:               JY = KY
  212:               DO 80 J = 1,N
  213:                   TEMP1 = ALPHA*X(JX)
  214:                   TEMP2 = ZERO
  215:                   IX = KX
  216:                   IY = KY
  217:                   DO 70 I = 1,J - 1
  218:                       Y(IY) = Y(IY) + TEMP1*A(I,J)
  219:                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
  220:                       IX = IX + INCX
  221:                       IY = IY + INCY
  222:    70             CONTINUE
  223:                   Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
  224:                   JX = JX + INCX
  225:                   JY = JY + INCY
  226:    80         CONTINUE
  227:           END IF
  228:       ELSE
  229: *
  230: *        Form  y  when A is stored in lower triangle.
  231: *
  232:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  233:               DO 100 J = 1,N
  234:                   TEMP1 = ALPHA*X(J)
  235:                   TEMP2 = ZERO
  236:                   Y(J) = Y(J) + TEMP1*DBLE(A(J,J))
  237:                   DO 90 I = J + 1,N
  238:                       Y(I) = Y(I) + TEMP1*A(I,J)
  239:                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
  240:    90             CONTINUE
  241:                   Y(J) = Y(J) + ALPHA*TEMP2
  242:   100         CONTINUE
  243:           ELSE
  244:               JX = KX
  245:               JY = KY
  246:               DO 120 J = 1,N
  247:                   TEMP1 = ALPHA*X(JX)
  248:                   TEMP2 = ZERO
  249:                   Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J))
  250:                   IX = JX
  251:                   IY = JY
  252:                   DO 110 I = J + 1,N
  253:                       IX = IX + INCX
  254:                       IY = IY + INCY
  255:                       Y(IY) = Y(IY) + TEMP1*A(I,J)
  256:                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
  257:   110             CONTINUE
  258:                   Y(JY) = Y(JY) + ALPHA*TEMP2
  259:                   JX = JX + INCX
  260:                   JY = JY + INCY
  261:   120         CONTINUE
  262:           END IF
  263:       END IF
  264: *
  265:       RETURN
  266: *
  267: *     End of ZHEMV .
  268: *
  269:       END

CVSweb interface <joel.bertrand@systella.fr>