File:  [local] / rpl / lapack / blas / zhemm.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:37:54 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_25, HEAD
Cohérence Blas.

    1: *> \brief \b ZHEMM
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE ZHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
   12:    13: *       .. Scalar Arguments ..
   14: *       COMPLEX*16 ALPHA,BETA
   15: *       INTEGER LDA,LDB,LDC,M,N
   16: *       CHARACTER SIDE,UPLO
   17: *       ..
   18: *       .. Array Arguments ..
   19: *       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
   20: *       ..
   21: *  
   22: *
   23: *> \par Purpose:
   24: *  =============
   25: *>
   26: *> \verbatim
   27: *>
   28: *> ZHEMM  performs one of the matrix-matrix operations
   29: *>
   30: *>    C := alpha*A*B + beta*C,
   31: *>
   32: *> or
   33: *>
   34: *>    C := alpha*B*A + beta*C,
   35: *>
   36: *> where alpha and beta are scalars, A is an hermitian matrix and  B and
   37: *> C are m by n matrices.
   38: *> \endverbatim
   39: *
   40: *  Arguments:
   41: *  ==========
   42: *
   43: *> \param[in] SIDE
   44: *> \verbatim
   45: *>          SIDE is CHARACTER*1
   46: *>           On entry,  SIDE  specifies whether  the  hermitian matrix  A
   47: *>           appears on the  left or right  in the  operation as follows:
   48: *>
   49: *>              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
   50: *>
   51: *>              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
   52: *> \endverbatim
   53: *>
   54: *> \param[in] UPLO
   55: *> \verbatim
   56: *>          UPLO is CHARACTER*1
   57: *>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
   58: *>           triangular  part  of  the  hermitian  matrix   A  is  to  be
   59: *>           referenced as follows:
   60: *>
   61: *>              UPLO = 'U' or 'u'   Only the upper triangular part of the
   62: *>                                  hermitian matrix is to be referenced.
   63: *>
   64: *>              UPLO = 'L' or 'l'   Only the lower triangular part of the
   65: *>                                  hermitian matrix is to be referenced.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] M
   69: *> \verbatim
   70: *>          M is INTEGER
   71: *>           On entry,  M  specifies the number of rows of the matrix  C.
   72: *>           M  must be at least zero.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] N
   76: *> \verbatim
   77: *>          N is INTEGER
   78: *>           On entry, N specifies the number of columns of the matrix C.
   79: *>           N  must be at least zero.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] ALPHA
   83: *> \verbatim
   84: *>          ALPHA is COMPLEX*16
   85: *>           On entry, ALPHA specifies the scalar alpha.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] A
   89: *> \verbatim
   90: *>          A is COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
   91: *>           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
   92: *>           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
   93: *>           the array  A  must contain the  hermitian matrix,  such that
   94: *>           when  UPLO = 'U' or 'u', the leading m by m upper triangular
   95: *>           part of the array  A  must contain the upper triangular part
   96: *>           of the  hermitian matrix and the  strictly  lower triangular
   97: *>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
   98: *>           the leading  m by m  lower triangular part  of the  array  A
   99: *>           must  contain  the  lower triangular part  of the  hermitian
  100: *>           matrix and the  strictly upper triangular part of  A  is not
  101: *>           referenced.
  102: *>           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
  103: *>           the array  A  must contain the  hermitian matrix,  such that
  104: *>           when  UPLO = 'U' or 'u', the leading n by n upper triangular
  105: *>           part of the array  A  must contain the upper triangular part
  106: *>           of the  hermitian matrix and the  strictly  lower triangular
  107: *>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
  108: *>           the leading  n by n  lower triangular part  of the  array  A
  109: *>           must  contain  the  lower triangular part  of the  hermitian
  110: *>           matrix and the  strictly upper triangular part of  A  is not
  111: *>           referenced.
  112: *>           Note that the imaginary parts  of the diagonal elements need
  113: *>           not be set, they are assumed to be zero.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDA
  117: *> \verbatim
  118: *>          LDA is INTEGER
  119: *>           On entry, LDA specifies the first dimension of A as declared
  120: *>           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
  121: *>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
  122: *>           least max( 1, n ).
  123: *> \endverbatim
  124: *>
  125: *> \param[in] B
  126: *> \verbatim
  127: *>          B is COMPLEX*16 array of DIMENSION ( LDB, n ).
  128: *>           Before entry, the leading  m by n part of the array  B  must
  129: *>           contain the matrix B.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDB
  133: *> \verbatim
  134: *>          LDB is INTEGER
  135: *>           On entry, LDB specifies the first dimension of B as declared
  136: *>           in  the  calling  (sub)  program.   LDB  must  be  at  least
  137: *>           max( 1, m ).
  138: *> \endverbatim
  139: *>
  140: *> \param[in] BETA
  141: *> \verbatim
  142: *>          BETA is COMPLEX*16
  143: *>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
  144: *>           supplied as zero then C need not be set on input.
  145: *> \endverbatim
  146: *>
  147: *> \param[in,out] C
  148: *> \verbatim
  149: *>          C is COMPLEX*16 array of DIMENSION ( LDC, n ).
  150: *>           Before entry, the leading  m by n  part of the array  C must
  151: *>           contain the matrix  C,  except when  beta  is zero, in which
  152: *>           case C need not be set on entry.
  153: *>           On exit, the array  C  is overwritten by the  m by n updated
  154: *>           matrix.
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LDC
  158: *> \verbatim
  159: *>          LDC is INTEGER
  160: *>           On entry, LDC specifies the first dimension of C as declared
  161: *>           in  the  calling  (sub)  program.   LDC  must  be  at  least
  162: *>           max( 1, m ).
  163: *> \endverbatim
  164: *
  165: *  Authors:
  166: *  ========
  167: *
  168: *> \author Univ. of Tennessee 
  169: *> \author Univ. of California Berkeley 
  170: *> \author Univ. of Colorado Denver 
  171: *> \author NAG Ltd. 
  172: *
  173: *> \date November 2011
  174: *
  175: *> \ingroup complex16_blas_level3
  176: *
  177: *> \par Further Details:
  178: *  =====================
  179: *>
  180: *> \verbatim
  181: *>
  182: *>  Level 3 Blas routine.
  183: *>
  184: *>  -- Written on 8-February-1989.
  185: *>     Jack Dongarra, Argonne National Laboratory.
  186: *>     Iain Duff, AERE Harwell.
  187: *>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
  188: *>     Sven Hammarling, Numerical Algorithms Group Ltd.
  189: *> \endverbatim
  190: *>
  191: *  =====================================================================
  192:       SUBROUTINE ZHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  193: *
  194: *  -- Reference BLAS level3 routine (version 3.4.0) --
  195: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  196: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  197: *     November 2011
  198: *
  199: *     .. Scalar Arguments ..
  200:       COMPLEX*16 ALPHA,BETA
  201:       INTEGER LDA,LDB,LDC,M,N
  202:       CHARACTER SIDE,UPLO
  203: *     ..
  204: *     .. Array Arguments ..
  205:       COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
  206: *     ..
  207: *
  208: *  =====================================================================
  209: *
  210: *     .. External Functions ..
  211:       LOGICAL LSAME
  212:       EXTERNAL LSAME
  213: *     ..
  214: *     .. External Subroutines ..
  215:       EXTERNAL XERBLA
  216: *     ..
  217: *     .. Intrinsic Functions ..
  218:       INTRINSIC DBLE,DCONJG,MAX
  219: *     ..
  220: *     .. Local Scalars ..
  221:       COMPLEX*16 TEMP1,TEMP2
  222:       INTEGER I,INFO,J,K,NROWA
  223:       LOGICAL UPPER
  224: *     ..
  225: *     .. Parameters ..
  226:       COMPLEX*16 ONE
  227:       PARAMETER (ONE= (1.0D+0,0.0D+0))
  228:       COMPLEX*16 ZERO
  229:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  230: *     ..
  231: *
  232: *     Set NROWA as the number of rows of A.
  233: *
  234:       IF (LSAME(SIDE,'L')) THEN
  235:           NROWA = M
  236:       ELSE
  237:           NROWA = N
  238:       END IF
  239:       UPPER = LSAME(UPLO,'U')
  240: *
  241: *     Test the input parameters.
  242: *
  243:       INFO = 0
  244:       IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
  245:           INFO = 1
  246:       ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
  247:           INFO = 2
  248:       ELSE IF (M.LT.0) THEN
  249:           INFO = 3
  250:       ELSE IF (N.LT.0) THEN
  251:           INFO = 4
  252:       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  253:           INFO = 7
  254:       ELSE IF (LDB.LT.MAX(1,M)) THEN
  255:           INFO = 9
  256:       ELSE IF (LDC.LT.MAX(1,M)) THEN
  257:           INFO = 12
  258:       END IF
  259:       IF (INFO.NE.0) THEN
  260:           CALL XERBLA('ZHEMM ',INFO)
  261:           RETURN
  262:       END IF
  263: *
  264: *     Quick return if possible.
  265: *
  266:       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  267:      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  268: *
  269: *     And when  alpha.eq.zero.
  270: *
  271:       IF (ALPHA.EQ.ZERO) THEN
  272:           IF (BETA.EQ.ZERO) THEN
  273:               DO 20 J = 1,N
  274:                   DO 10 I = 1,M
  275:                       C(I,J) = ZERO
  276:    10             CONTINUE
  277:    20         CONTINUE
  278:           ELSE
  279:               DO 40 J = 1,N
  280:                   DO 30 I = 1,M
  281:                       C(I,J) = BETA*C(I,J)
  282:    30             CONTINUE
  283:    40         CONTINUE
  284:           END IF
  285:           RETURN
  286:       END IF
  287: *
  288: *     Start the operations.
  289: *
  290:       IF (LSAME(SIDE,'L')) THEN
  291: *
  292: *        Form  C := alpha*A*B + beta*C.
  293: *
  294:           IF (UPPER) THEN
  295:               DO 70 J = 1,N
  296:                   DO 60 I = 1,M
  297:                       TEMP1 = ALPHA*B(I,J)
  298:                       TEMP2 = ZERO
  299:                       DO 50 K = 1,I - 1
  300:                           C(K,J) = C(K,J) + TEMP1*A(K,I)
  301:                           TEMP2 = TEMP2 + B(K,J)*DCONJG(A(K,I))
  302:    50                 CONTINUE
  303:                       IF (BETA.EQ.ZERO) THEN
  304:                           C(I,J) = TEMP1*DBLE(A(I,I)) + ALPHA*TEMP2
  305:                       ELSE
  306:                           C(I,J) = BETA*C(I,J) + TEMP1*DBLE(A(I,I)) +
  307:      +                             ALPHA*TEMP2
  308:                       END IF
  309:    60             CONTINUE
  310:    70         CONTINUE
  311:           ELSE
  312:               DO 100 J = 1,N
  313:                   DO 90 I = M,1,-1
  314:                       TEMP1 = ALPHA*B(I,J)
  315:                       TEMP2 = ZERO
  316:                       DO 80 K = I + 1,M
  317:                           C(K,J) = C(K,J) + TEMP1*A(K,I)
  318:                           TEMP2 = TEMP2 + B(K,J)*DCONJG(A(K,I))
  319:    80                 CONTINUE
  320:                       IF (BETA.EQ.ZERO) THEN
  321:                           C(I,J) = TEMP1*DBLE(A(I,I)) + ALPHA*TEMP2
  322:                       ELSE
  323:                           C(I,J) = BETA*C(I,J) + TEMP1*DBLE(A(I,I)) +
  324:      +                             ALPHA*TEMP2
  325:                       END IF
  326:    90             CONTINUE
  327:   100         CONTINUE
  328:           END IF
  329:       ELSE
  330: *
  331: *        Form  C := alpha*B*A + beta*C.
  332: *
  333:           DO 170 J = 1,N
  334:               TEMP1 = ALPHA*DBLE(A(J,J))
  335:               IF (BETA.EQ.ZERO) THEN
  336:                   DO 110 I = 1,M
  337:                       C(I,J) = TEMP1*B(I,J)
  338:   110             CONTINUE
  339:               ELSE
  340:                   DO 120 I = 1,M
  341:                       C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
  342:   120             CONTINUE
  343:               END IF
  344:               DO 140 K = 1,J - 1
  345:                   IF (UPPER) THEN
  346:                       TEMP1 = ALPHA*A(K,J)
  347:                   ELSE
  348:                       TEMP1 = ALPHA*DCONJG(A(J,K))
  349:                   END IF
  350:                   DO 130 I = 1,M
  351:                       C(I,J) = C(I,J) + TEMP1*B(I,K)
  352:   130             CONTINUE
  353:   140         CONTINUE
  354:               DO 160 K = J + 1,N
  355:                   IF (UPPER) THEN
  356:                       TEMP1 = ALPHA*DCONJG(A(J,K))
  357:                   ELSE
  358:                       TEMP1 = ALPHA*A(K,J)
  359:                   END IF
  360:                   DO 150 I = 1,M
  361:                       C(I,J) = C(I,J) + TEMP1*B(I,K)
  362:   150             CONTINUE
  363:   160         CONTINUE
  364:   170     CONTINUE
  365:       END IF
  366: *
  367:       RETURN
  368: *
  369: *     End of ZHEMM .
  370: *
  371:       END

CVSweb interface <joel.bertrand@systella.fr>