File:  [local] / rpl / lapack / blas / zhbmv.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:41 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE COMPLEX ALPHA,BETA
    4:       INTEGER INCX,INCY,K,LDA,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  ZHBMV  performs the matrix-vector  operation
   15: *
   16: *     y := alpha*A*x + beta*y,
   17: *
   18: *  where alpha and beta are scalars, x and y are n element vectors and
   19: *  A is an n by n hermitian band matrix, with k super-diagonals.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the band matrix A is being supplied as
   27: *           follows:
   28: *
   29: *              UPLO = 'U' or 'u'   The upper triangular part of A is
   30: *                                  being supplied.
   31: *
   32: *              UPLO = 'L' or 'l'   The lower triangular part of A is
   33: *                                  being supplied.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  K      - INTEGER.
   43: *           On entry, K specifies the number of super-diagonals of the
   44: *           matrix A. K must satisfy  0 .le. K.
   45: *           Unchanged on exit.
   46: *
   47: *  ALPHA  - COMPLEX*16      .
   48: *           On entry, ALPHA specifies the scalar alpha.
   49: *           Unchanged on exit.
   50: *
   51: *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
   52: *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
   53: *           by n part of the array A must contain the upper triangular
   54: *           band part of the hermitian matrix, supplied column by
   55: *           column, with the leading diagonal of the matrix in row
   56: *           ( k + 1 ) of the array, the first super-diagonal starting at
   57: *           position 2 in row k, and so on. The top left k by k triangle
   58: *           of the array A is not referenced.
   59: *           The following program segment will transfer the upper
   60: *           triangular part of a hermitian band matrix from conventional
   61: *           full matrix storage to band storage:
   62: *
   63: *                 DO 20, J = 1, N
   64: *                    M = K + 1 - J
   65: *                    DO 10, I = MAX( 1, J - K ), J
   66: *                       A( M + I, J ) = matrix( I, J )
   67: *              10    CONTINUE
   68: *              20 CONTINUE
   69: *
   70: *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
   71: *           by n part of the array A must contain the lower triangular
   72: *           band part of the hermitian matrix, supplied column by
   73: *           column, with the leading diagonal of the matrix in row 1 of
   74: *           the array, the first sub-diagonal starting at position 1 in
   75: *           row 2, and so on. The bottom right k by k triangle of the
   76: *           array A is not referenced.
   77: *           The following program segment will transfer the lower
   78: *           triangular part of a hermitian band matrix from conventional
   79: *           full matrix storage to band storage:
   80: *
   81: *                 DO 20, J = 1, N
   82: *                    M = 1 - J
   83: *                    DO 10, I = J, MIN( N, J + K )
   84: *                       A( M + I, J ) = matrix( I, J )
   85: *              10    CONTINUE
   86: *              20 CONTINUE
   87: *
   88: *           Note that the imaginary parts of the diagonal elements need
   89: *           not be set and are assumed to be zero.
   90: *           Unchanged on exit.
   91: *
   92: *  LDA    - INTEGER.
   93: *           On entry, LDA specifies the first dimension of A as declared
   94: *           in the calling (sub) program. LDA must be at least
   95: *           ( k + 1 ).
   96: *           Unchanged on exit.
   97: *
   98: *  X      - COMPLEX*16       array of DIMENSION at least
   99: *           ( 1 + ( n - 1 )*abs( INCX ) ).
  100: *           Before entry, the incremented array X must contain the
  101: *           vector x.
  102: *           Unchanged on exit.
  103: *
  104: *  INCX   - INTEGER.
  105: *           On entry, INCX specifies the increment for the elements of
  106: *           X. INCX must not be zero.
  107: *           Unchanged on exit.
  108: *
  109: *  BETA   - COMPLEX*16      .
  110: *           On entry, BETA specifies the scalar beta.
  111: *           Unchanged on exit.
  112: *
  113: *  Y      - COMPLEX*16       array of DIMENSION at least
  114: *           ( 1 + ( n - 1 )*abs( INCY ) ).
  115: *           Before entry, the incremented array Y must contain the
  116: *           vector y. On exit, Y is overwritten by the updated vector y.
  117: *
  118: *  INCY   - INTEGER.
  119: *           On entry, INCY specifies the increment for the elements of
  120: *           Y. INCY must not be zero.
  121: *           Unchanged on exit.
  122: *
  123: *  Further Details
  124: *  ===============
  125: *
  126: *  Level 2 Blas routine.
  127: *
  128: *  -- Written on 22-October-1986.
  129: *     Jack Dongarra, Argonne National Lab.
  130: *     Jeremy Du Croz, Nag Central Office.
  131: *     Sven Hammarling, Nag Central Office.
  132: *     Richard Hanson, Sandia National Labs.
  133: *
  134: *  =====================================================================
  135: *
  136: *     .. Parameters ..
  137:       DOUBLE COMPLEX ONE
  138:       PARAMETER (ONE= (1.0D+0,0.0D+0))
  139:       DOUBLE COMPLEX ZERO
  140:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
  141: *     ..
  142: *     .. Local Scalars ..
  143:       DOUBLE COMPLEX TEMP1,TEMP2
  144:       INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
  145: *     ..
  146: *     .. External Functions ..
  147:       LOGICAL LSAME
  148:       EXTERNAL LSAME
  149: *     ..
  150: *     .. External Subroutines ..
  151:       EXTERNAL XERBLA
  152: *     ..
  153: *     .. Intrinsic Functions ..
  154:       INTRINSIC DBLE,DCONJG,MAX,MIN
  155: *     ..
  156: *
  157: *     Test the input parameters.
  158: *
  159:       INFO = 0
  160:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  161:           INFO = 1
  162:       ELSE IF (N.LT.0) THEN
  163:           INFO = 2
  164:       ELSE IF (K.LT.0) THEN
  165:           INFO = 3
  166:       ELSE IF (LDA.LT. (K+1)) THEN
  167:           INFO = 6
  168:       ELSE IF (INCX.EQ.0) THEN
  169:           INFO = 8
  170:       ELSE IF (INCY.EQ.0) THEN
  171:           INFO = 11
  172:       END IF
  173:       IF (INFO.NE.0) THEN
  174:           CALL XERBLA('ZHBMV ',INFO)
  175:           RETURN
  176:       END IF
  177: *
  178: *     Quick return if possible.
  179: *
  180:       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  181: *
  182: *     Set up the start points in  X  and  Y.
  183: *
  184:       IF (INCX.GT.0) THEN
  185:           KX = 1
  186:       ELSE
  187:           KX = 1 - (N-1)*INCX
  188:       END IF
  189:       IF (INCY.GT.0) THEN
  190:           KY = 1
  191:       ELSE
  192:           KY = 1 - (N-1)*INCY
  193:       END IF
  194: *
  195: *     Start the operations. In this version the elements of the array A
  196: *     are accessed sequentially with one pass through A.
  197: *
  198: *     First form  y := beta*y.
  199: *
  200:       IF (BETA.NE.ONE) THEN
  201:           IF (INCY.EQ.1) THEN
  202:               IF (BETA.EQ.ZERO) THEN
  203:                   DO 10 I = 1,N
  204:                       Y(I) = ZERO
  205:    10             CONTINUE
  206:               ELSE
  207:                   DO 20 I = 1,N
  208:                       Y(I) = BETA*Y(I)
  209:    20             CONTINUE
  210:               END IF
  211:           ELSE
  212:               IY = KY
  213:               IF (BETA.EQ.ZERO) THEN
  214:                   DO 30 I = 1,N
  215:                       Y(IY) = ZERO
  216:                       IY = IY + INCY
  217:    30             CONTINUE
  218:               ELSE
  219:                   DO 40 I = 1,N
  220:                       Y(IY) = BETA*Y(IY)
  221:                       IY = IY + INCY
  222:    40             CONTINUE
  223:               END IF
  224:           END IF
  225:       END IF
  226:       IF (ALPHA.EQ.ZERO) RETURN
  227:       IF (LSAME(UPLO,'U')) THEN
  228: *
  229: *        Form  y  when upper triangle of A is stored.
  230: *
  231:           KPLUS1 = K + 1
  232:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  233:               DO 60 J = 1,N
  234:                   TEMP1 = ALPHA*X(J)
  235:                   TEMP2 = ZERO
  236:                   L = KPLUS1 - J
  237:                   DO 50 I = MAX(1,J-K),J - 1
  238:                       Y(I) = Y(I) + TEMP1*A(L+I,J)
  239:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I)
  240:    50             CONTINUE
  241:                   Y(J) = Y(J) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2
  242:    60         CONTINUE
  243:           ELSE
  244:               JX = KX
  245:               JY = KY
  246:               DO 80 J = 1,N
  247:                   TEMP1 = ALPHA*X(JX)
  248:                   TEMP2 = ZERO
  249:                   IX = KX
  250:                   IY = KY
  251:                   L = KPLUS1 - J
  252:                   DO 70 I = MAX(1,J-K),J - 1
  253:                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
  254:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX)
  255:                       IX = IX + INCX
  256:                       IY = IY + INCY
  257:    70             CONTINUE
  258:                   Y(JY) = Y(JY) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2
  259:                   JX = JX + INCX
  260:                   JY = JY + INCY
  261:                   IF (J.GT.K) THEN
  262:                       KX = KX + INCX
  263:                       KY = KY + INCY
  264:                   END IF
  265:    80         CONTINUE
  266:           END IF
  267:       ELSE
  268: *
  269: *        Form  y  when lower triangle of A is stored.
  270: *
  271:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  272:               DO 100 J = 1,N
  273:                   TEMP1 = ALPHA*X(J)
  274:                   TEMP2 = ZERO
  275:                   Y(J) = Y(J) + TEMP1*DBLE(A(1,J))
  276:                   L = 1 - J
  277:                   DO 90 I = J + 1,MIN(N,J+K)
  278:                       Y(I) = Y(I) + TEMP1*A(L+I,J)
  279:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I)
  280:    90             CONTINUE
  281:                   Y(J) = Y(J) + ALPHA*TEMP2
  282:   100         CONTINUE
  283:           ELSE
  284:               JX = KX
  285:               JY = KY
  286:               DO 120 J = 1,N
  287:                   TEMP1 = ALPHA*X(JX)
  288:                   TEMP2 = ZERO
  289:                   Y(JY) = Y(JY) + TEMP1*DBLE(A(1,J))
  290:                   L = 1 - J
  291:                   IX = JX
  292:                   IY = JY
  293:                   DO 110 I = J + 1,MIN(N,J+K)
  294:                       IX = IX + INCX
  295:                       IY = IY + INCY
  296:                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
  297:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX)
  298:   110             CONTINUE
  299:                   Y(JY) = Y(JY) + ALPHA*TEMP2
  300:                   JX = JX + INCX
  301:                   JY = JY + INCY
  302:   120         CONTINUE
  303:           END IF
  304:       END IF
  305: *
  306:       RETURN
  307: *
  308: *     End of ZHBMV .
  309: *
  310:       END

CVSweb interface <joel.bertrand@systella.fr>