Annotation of rpl/lapack/blas/zhbmv.f, revision 1.16

1.8       bertrand    1: *> \brief \b ZHBMV
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.13      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *  Definition:
                      9: *  ===========
                     10: *
                     11: *       SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
1.13      bertrand   12: *
1.8       bertrand   13: *       .. Scalar Arguments ..
                     14: *       COMPLEX*16 ALPHA,BETA
                     15: *       INTEGER INCX,INCY,K,LDA,N
                     16: *       CHARACTER UPLO
                     17: *       ..
                     18: *       .. Array Arguments ..
                     19: *       COMPLEX*16 A(LDA,*),X(*),Y(*)
                     20: *       ..
1.13      bertrand   21: *
1.8       bertrand   22: *
                     23: *> \par Purpose:
                     24: *  =============
                     25: *>
                     26: *> \verbatim
                     27: *>
                     28: *> ZHBMV  performs the matrix-vector  operation
                     29: *>
                     30: *>    y := alpha*A*x + beta*y,
                     31: *>
                     32: *> where alpha and beta are scalars, x and y are n element vectors and
                     33: *> A is an n by n hermitian band matrix, with k super-diagonals.
                     34: *> \endverbatim
                     35: *
                     36: *  Arguments:
                     37: *  ==========
                     38: *
                     39: *> \param[in] UPLO
                     40: *> \verbatim
                     41: *>          UPLO is CHARACTER*1
                     42: *>           On entry, UPLO specifies whether the upper or lower
                     43: *>           triangular part of the band matrix A is being supplied as
                     44: *>           follows:
                     45: *>
                     46: *>              UPLO = 'U' or 'u'   The upper triangular part of A is
                     47: *>                                  being supplied.
                     48: *>
                     49: *>              UPLO = 'L' or 'l'   The lower triangular part of A is
                     50: *>                                  being supplied.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>           On entry, N specifies the order of the matrix A.
                     57: *>           N must be at least zero.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] K
                     61: *> \verbatim
                     62: *>          K is INTEGER
                     63: *>           On entry, K specifies the number of super-diagonals of the
                     64: *>           matrix A. K must satisfy  0 .le. K.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] ALPHA
                     68: *> \verbatim
                     69: *>          ALPHA is COMPLEX*16
                     70: *>           On entry, ALPHA specifies the scalar alpha.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] A
                     74: *> \verbatim
1.14      bertrand   75: *>          A is COMPLEX*16 array, dimension ( LDA, N )
1.8       bertrand   76: *>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
                     77: *>           by n part of the array A must contain the upper triangular
                     78: *>           band part of the hermitian matrix, supplied column by
                     79: *>           column, with the leading diagonal of the matrix in row
                     80: *>           ( k + 1 ) of the array, the first super-diagonal starting at
                     81: *>           position 2 in row k, and so on. The top left k by k triangle
                     82: *>           of the array A is not referenced.
                     83: *>           The following program segment will transfer the upper
                     84: *>           triangular part of a hermitian band matrix from conventional
                     85: *>           full matrix storage to band storage:
                     86: *>
                     87: *>                 DO 20, J = 1, N
                     88: *>                    M = K + 1 - J
                     89: *>                    DO 10, I = MAX( 1, J - K ), J
                     90: *>                       A( M + I, J ) = matrix( I, J )
                     91: *>              10    CONTINUE
                     92: *>              20 CONTINUE
                     93: *>
                     94: *>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
                     95: *>           by n part of the array A must contain the lower triangular
                     96: *>           band part of the hermitian matrix, supplied column by
                     97: *>           column, with the leading diagonal of the matrix in row 1 of
                     98: *>           the array, the first sub-diagonal starting at position 1 in
                     99: *>           row 2, and so on. The bottom right k by k triangle of the
                    100: *>           array A is not referenced.
                    101: *>           The following program segment will transfer the lower
                    102: *>           triangular part of a hermitian band matrix from conventional
                    103: *>           full matrix storage to band storage:
                    104: *>
                    105: *>                 DO 20, J = 1, N
                    106: *>                    M = 1 - J
                    107: *>                    DO 10, I = J, MIN( N, J + K )
                    108: *>                       A( M + I, J ) = matrix( I, J )
                    109: *>              10    CONTINUE
                    110: *>              20 CONTINUE
                    111: *>
                    112: *>           Note that the imaginary parts of the diagonal elements need
                    113: *>           not be set and are assumed to be zero.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDA
                    117: *> \verbatim
                    118: *>          LDA is INTEGER
                    119: *>           On entry, LDA specifies the first dimension of A as declared
                    120: *>           in the calling (sub) program. LDA must be at least
                    121: *>           ( k + 1 ).
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] X
                    125: *> \verbatim
1.14      bertrand  126: *>          X is COMPLEX*16 array, dimension at least
1.8       bertrand  127: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
                    128: *>           Before entry, the incremented array X must contain the
                    129: *>           vector x.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] INCX
                    133: *> \verbatim
                    134: *>          INCX is INTEGER
                    135: *>           On entry, INCX specifies the increment for the elements of
                    136: *>           X. INCX must not be zero.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] BETA
                    140: *> \verbatim
                    141: *>          BETA is COMPLEX*16
                    142: *>           On entry, BETA specifies the scalar beta.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in,out] Y
                    146: *> \verbatim
1.14      bertrand  147: *>          Y is COMPLEX*16 array, dimension at least
1.8       bertrand  148: *>           ( 1 + ( n - 1 )*abs( INCY ) ).
                    149: *>           Before entry, the incremented array Y must contain the
                    150: *>           vector y. On exit, Y is overwritten by the updated vector y.
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[in] INCY
                    154: *> \verbatim
                    155: *>          INCY is INTEGER
                    156: *>           On entry, INCY specifies the increment for the elements of
                    157: *>           Y. INCY must not be zero.
                    158: *> \endverbatim
                    159: *
                    160: *  Authors:
                    161: *  ========
                    162: *
1.13      bertrand  163: *> \author Univ. of Tennessee
                    164: *> \author Univ. of California Berkeley
                    165: *> \author Univ. of Colorado Denver
                    166: *> \author NAG Ltd.
1.8       bertrand  167: *
                    168: *> \ingroup complex16_blas_level2
                    169: *
                    170: *> \par Further Details:
                    171: *  =====================
                    172: *>
                    173: *> \verbatim
                    174: *>
                    175: *>  Level 2 Blas routine.
                    176: *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
                    177: *>
                    178: *>  -- Written on 22-October-1986.
                    179: *>     Jack Dongarra, Argonne National Lab.
                    180: *>     Jeremy Du Croz, Nag Central Office.
                    181: *>     Sven Hammarling, Nag Central Office.
                    182: *>     Richard Hanson, Sandia National Labs.
                    183: *> \endverbatim
                    184: *>
                    185: *  =====================================================================
1.1       bertrand  186:       SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
1.8       bertrand  187: *
1.16    ! bertrand  188: *  -- Reference BLAS level2 routine --
1.8       bertrand  189: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
                    190: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    191: *
1.1       bertrand  192: *     .. Scalar Arguments ..
1.8       bertrand  193:       COMPLEX*16 ALPHA,BETA
1.1       bertrand  194:       INTEGER INCX,INCY,K,LDA,N
                    195:       CHARACTER UPLO
                    196: *     ..
                    197: *     .. Array Arguments ..
1.8       bertrand  198:       COMPLEX*16 A(LDA,*),X(*),Y(*)
1.1       bertrand  199: *     ..
                    200: *
                    201: *  =====================================================================
                    202: *
                    203: *     .. Parameters ..
1.8       bertrand  204:       COMPLEX*16 ONE
1.1       bertrand  205:       PARAMETER (ONE= (1.0D+0,0.0D+0))
1.8       bertrand  206:       COMPLEX*16 ZERO
1.1       bertrand  207:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
                    208: *     ..
                    209: *     .. Local Scalars ..
1.8       bertrand  210:       COMPLEX*16 TEMP1,TEMP2
1.1       bertrand  211:       INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
                    212: *     ..
                    213: *     .. External Functions ..
                    214:       LOGICAL LSAME
                    215:       EXTERNAL LSAME
                    216: *     ..
                    217: *     .. External Subroutines ..
                    218:       EXTERNAL XERBLA
                    219: *     ..
                    220: *     .. Intrinsic Functions ..
                    221:       INTRINSIC DBLE,DCONJG,MAX,MIN
                    222: *     ..
                    223: *
                    224: *     Test the input parameters.
                    225: *
                    226:       INFO = 0
                    227:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
                    228:           INFO = 1
                    229:       ELSE IF (N.LT.0) THEN
                    230:           INFO = 2
                    231:       ELSE IF (K.LT.0) THEN
                    232:           INFO = 3
                    233:       ELSE IF (LDA.LT. (K+1)) THEN
                    234:           INFO = 6
                    235:       ELSE IF (INCX.EQ.0) THEN
                    236:           INFO = 8
                    237:       ELSE IF (INCY.EQ.0) THEN
                    238:           INFO = 11
                    239:       END IF
                    240:       IF (INFO.NE.0) THEN
                    241:           CALL XERBLA('ZHBMV ',INFO)
                    242:           RETURN
                    243:       END IF
                    244: *
                    245: *     Quick return if possible.
                    246: *
                    247:       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
                    248: *
                    249: *     Set up the start points in  X  and  Y.
                    250: *
                    251:       IF (INCX.GT.0) THEN
                    252:           KX = 1
                    253:       ELSE
                    254:           KX = 1 - (N-1)*INCX
                    255:       END IF
                    256:       IF (INCY.GT.0) THEN
                    257:           KY = 1
                    258:       ELSE
                    259:           KY = 1 - (N-1)*INCY
                    260:       END IF
                    261: *
                    262: *     Start the operations. In this version the elements of the array A
                    263: *     are accessed sequentially with one pass through A.
                    264: *
                    265: *     First form  y := beta*y.
                    266: *
                    267:       IF (BETA.NE.ONE) THEN
                    268:           IF (INCY.EQ.1) THEN
                    269:               IF (BETA.EQ.ZERO) THEN
                    270:                   DO 10 I = 1,N
                    271:                       Y(I) = ZERO
                    272:    10             CONTINUE
                    273:               ELSE
                    274:                   DO 20 I = 1,N
                    275:                       Y(I) = BETA*Y(I)
                    276:    20             CONTINUE
                    277:               END IF
                    278:           ELSE
                    279:               IY = KY
                    280:               IF (BETA.EQ.ZERO) THEN
                    281:                   DO 30 I = 1,N
                    282:                       Y(IY) = ZERO
                    283:                       IY = IY + INCY
                    284:    30             CONTINUE
                    285:               ELSE
                    286:                   DO 40 I = 1,N
                    287:                       Y(IY) = BETA*Y(IY)
                    288:                       IY = IY + INCY
                    289:    40             CONTINUE
                    290:               END IF
                    291:           END IF
                    292:       END IF
                    293:       IF (ALPHA.EQ.ZERO) RETURN
                    294:       IF (LSAME(UPLO,'U')) THEN
                    295: *
                    296: *        Form  y  when upper triangle of A is stored.
                    297: *
                    298:           KPLUS1 = K + 1
                    299:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
                    300:               DO 60 J = 1,N
                    301:                   TEMP1 = ALPHA*X(J)
                    302:                   TEMP2 = ZERO
                    303:                   L = KPLUS1 - J
                    304:                   DO 50 I = MAX(1,J-K),J - 1
                    305:                       Y(I) = Y(I) + TEMP1*A(L+I,J)
                    306:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I)
                    307:    50             CONTINUE
                    308:                   Y(J) = Y(J) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2
                    309:    60         CONTINUE
                    310:           ELSE
                    311:               JX = KX
                    312:               JY = KY
                    313:               DO 80 J = 1,N
                    314:                   TEMP1 = ALPHA*X(JX)
                    315:                   TEMP2 = ZERO
                    316:                   IX = KX
                    317:                   IY = KY
                    318:                   L = KPLUS1 - J
                    319:                   DO 70 I = MAX(1,J-K),J - 1
                    320:                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
                    321:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX)
                    322:                       IX = IX + INCX
                    323:                       IY = IY + INCY
                    324:    70             CONTINUE
                    325:                   Y(JY) = Y(JY) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2
                    326:                   JX = JX + INCX
                    327:                   JY = JY + INCY
                    328:                   IF (J.GT.K) THEN
                    329:                       KX = KX + INCX
                    330:                       KY = KY + INCY
                    331:                   END IF
                    332:    80         CONTINUE
                    333:           END IF
                    334:       ELSE
                    335: *
                    336: *        Form  y  when lower triangle of A is stored.
                    337: *
                    338:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
                    339:               DO 100 J = 1,N
                    340:                   TEMP1 = ALPHA*X(J)
                    341:                   TEMP2 = ZERO
                    342:                   Y(J) = Y(J) + TEMP1*DBLE(A(1,J))
                    343:                   L = 1 - J
                    344:                   DO 90 I = J + 1,MIN(N,J+K)
                    345:                       Y(I) = Y(I) + TEMP1*A(L+I,J)
                    346:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I)
                    347:    90             CONTINUE
                    348:                   Y(J) = Y(J) + ALPHA*TEMP2
                    349:   100         CONTINUE
                    350:           ELSE
                    351:               JX = KX
                    352:               JY = KY
                    353:               DO 120 J = 1,N
                    354:                   TEMP1 = ALPHA*X(JX)
                    355:                   TEMP2 = ZERO
                    356:                   Y(JY) = Y(JY) + TEMP1*DBLE(A(1,J))
                    357:                   L = 1 - J
                    358:                   IX = JX
                    359:                   IY = JY
                    360:                   DO 110 I = J + 1,MIN(N,J+K)
                    361:                       IX = IX + INCX
                    362:                       IY = IY + INCY
                    363:                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
                    364:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX)
                    365:   110             CONTINUE
                    366:                   Y(JY) = Y(JY) + ALPHA*TEMP2
                    367:                   JX = JX + INCX
                    368:                   JY = JY + INCY
                    369:   120         CONTINUE
                    370:           END IF
                    371:       END IF
                    372: *
                    373:       RETURN
                    374: *
1.16    ! bertrand  375: *     End of ZHBMV
1.1       bertrand  376: *
                    377:       END

CVSweb interface <joel.bertrand@systella.fr>