Annotation of rpl/lapack/blas/zhbmv.f, revision 1.15

1.8       bertrand    1: *> \brief \b ZHBMV
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.13      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *  Definition:
                      9: *  ===========
                     10: *
                     11: *       SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
1.13      bertrand   12: *
1.8       bertrand   13: *       .. Scalar Arguments ..
                     14: *       COMPLEX*16 ALPHA,BETA
                     15: *       INTEGER INCX,INCY,K,LDA,N
                     16: *       CHARACTER UPLO
                     17: *       ..
                     18: *       .. Array Arguments ..
                     19: *       COMPLEX*16 A(LDA,*),X(*),Y(*)
                     20: *       ..
1.13      bertrand   21: *
1.8       bertrand   22: *
                     23: *> \par Purpose:
                     24: *  =============
                     25: *>
                     26: *> \verbatim
                     27: *>
                     28: *> ZHBMV  performs the matrix-vector  operation
                     29: *>
                     30: *>    y := alpha*A*x + beta*y,
                     31: *>
                     32: *> where alpha and beta are scalars, x and y are n element vectors and
                     33: *> A is an n by n hermitian band matrix, with k super-diagonals.
                     34: *> \endverbatim
                     35: *
                     36: *  Arguments:
                     37: *  ==========
                     38: *
                     39: *> \param[in] UPLO
                     40: *> \verbatim
                     41: *>          UPLO is CHARACTER*1
                     42: *>           On entry, UPLO specifies whether the upper or lower
                     43: *>           triangular part of the band matrix A is being supplied as
                     44: *>           follows:
                     45: *>
                     46: *>              UPLO = 'U' or 'u'   The upper triangular part of A is
                     47: *>                                  being supplied.
                     48: *>
                     49: *>              UPLO = 'L' or 'l'   The lower triangular part of A is
                     50: *>                                  being supplied.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>           On entry, N specifies the order of the matrix A.
                     57: *>           N must be at least zero.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] K
                     61: *> \verbatim
                     62: *>          K is INTEGER
                     63: *>           On entry, K specifies the number of super-diagonals of the
                     64: *>           matrix A. K must satisfy  0 .le. K.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] ALPHA
                     68: *> \verbatim
                     69: *>          ALPHA is COMPLEX*16
                     70: *>           On entry, ALPHA specifies the scalar alpha.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] A
                     74: *> \verbatim
1.14      bertrand   75: *>          A is COMPLEX*16 array, dimension ( LDA, N )
1.8       bertrand   76: *>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
                     77: *>           by n part of the array A must contain the upper triangular
                     78: *>           band part of the hermitian matrix, supplied column by
                     79: *>           column, with the leading diagonal of the matrix in row
                     80: *>           ( k + 1 ) of the array, the first super-diagonal starting at
                     81: *>           position 2 in row k, and so on. The top left k by k triangle
                     82: *>           of the array A is not referenced.
                     83: *>           The following program segment will transfer the upper
                     84: *>           triangular part of a hermitian band matrix from conventional
                     85: *>           full matrix storage to band storage:
                     86: *>
                     87: *>                 DO 20, J = 1, N
                     88: *>                    M = K + 1 - J
                     89: *>                    DO 10, I = MAX( 1, J - K ), J
                     90: *>                       A( M + I, J ) = matrix( I, J )
                     91: *>              10    CONTINUE
                     92: *>              20 CONTINUE
                     93: *>
                     94: *>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
                     95: *>           by n part of the array A must contain the lower triangular
                     96: *>           band part of the hermitian matrix, supplied column by
                     97: *>           column, with the leading diagonal of the matrix in row 1 of
                     98: *>           the array, the first sub-diagonal starting at position 1 in
                     99: *>           row 2, and so on. The bottom right k by k triangle of the
                    100: *>           array A is not referenced.
                    101: *>           The following program segment will transfer the lower
                    102: *>           triangular part of a hermitian band matrix from conventional
                    103: *>           full matrix storage to band storage:
                    104: *>
                    105: *>                 DO 20, J = 1, N
                    106: *>                    M = 1 - J
                    107: *>                    DO 10, I = J, MIN( N, J + K )
                    108: *>                       A( M + I, J ) = matrix( I, J )
                    109: *>              10    CONTINUE
                    110: *>              20 CONTINUE
                    111: *>
                    112: *>           Note that the imaginary parts of the diagonal elements need
                    113: *>           not be set and are assumed to be zero.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDA
                    117: *> \verbatim
                    118: *>          LDA is INTEGER
                    119: *>           On entry, LDA specifies the first dimension of A as declared
                    120: *>           in the calling (sub) program. LDA must be at least
                    121: *>           ( k + 1 ).
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] X
                    125: *> \verbatim
1.14      bertrand  126: *>          X is COMPLEX*16 array, dimension at least
1.8       bertrand  127: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
                    128: *>           Before entry, the incremented array X must contain the
                    129: *>           vector x.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] INCX
                    133: *> \verbatim
                    134: *>          INCX is INTEGER
                    135: *>           On entry, INCX specifies the increment for the elements of
                    136: *>           X. INCX must not be zero.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] BETA
                    140: *> \verbatim
                    141: *>          BETA is COMPLEX*16
                    142: *>           On entry, BETA specifies the scalar beta.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in,out] Y
                    146: *> \verbatim
1.14      bertrand  147: *>          Y is COMPLEX*16 array, dimension at least
1.8       bertrand  148: *>           ( 1 + ( n - 1 )*abs( INCY ) ).
                    149: *>           Before entry, the incremented array Y must contain the
                    150: *>           vector y. On exit, Y is overwritten by the updated vector y.
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[in] INCY
                    154: *> \verbatim
                    155: *>          INCY is INTEGER
                    156: *>           On entry, INCY specifies the increment for the elements of
                    157: *>           Y. INCY must not be zero.
                    158: *> \endverbatim
                    159: *
                    160: *  Authors:
                    161: *  ========
                    162: *
1.13      bertrand  163: *> \author Univ. of Tennessee
                    164: *> \author Univ. of California Berkeley
                    165: *> \author Univ. of Colorado Denver
                    166: *> \author NAG Ltd.
1.8       bertrand  167: *
1.13      bertrand  168: *> \date December 2016
1.8       bertrand  169: *
                    170: *> \ingroup complex16_blas_level2
                    171: *
                    172: *> \par Further Details:
                    173: *  =====================
                    174: *>
                    175: *> \verbatim
                    176: *>
                    177: *>  Level 2 Blas routine.
                    178: *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
                    179: *>
                    180: *>  -- Written on 22-October-1986.
                    181: *>     Jack Dongarra, Argonne National Lab.
                    182: *>     Jeremy Du Croz, Nag Central Office.
                    183: *>     Sven Hammarling, Nag Central Office.
                    184: *>     Richard Hanson, Sandia National Labs.
                    185: *> \endverbatim
                    186: *>
                    187: *  =====================================================================
1.1       bertrand  188:       SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
1.8       bertrand  189: *
1.13      bertrand  190: *  -- Reference BLAS level2 routine (version 3.7.0) --
1.8       bertrand  191: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
                    192: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.13      bertrand  193: *     December 2016
1.8       bertrand  194: *
1.1       bertrand  195: *     .. Scalar Arguments ..
1.8       bertrand  196:       COMPLEX*16 ALPHA,BETA
1.1       bertrand  197:       INTEGER INCX,INCY,K,LDA,N
                    198:       CHARACTER UPLO
                    199: *     ..
                    200: *     .. Array Arguments ..
1.8       bertrand  201:       COMPLEX*16 A(LDA,*),X(*),Y(*)
1.1       bertrand  202: *     ..
                    203: *
                    204: *  =====================================================================
                    205: *
                    206: *     .. Parameters ..
1.8       bertrand  207:       COMPLEX*16 ONE
1.1       bertrand  208:       PARAMETER (ONE= (1.0D+0,0.0D+0))
1.8       bertrand  209:       COMPLEX*16 ZERO
1.1       bertrand  210:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
                    211: *     ..
                    212: *     .. Local Scalars ..
1.8       bertrand  213:       COMPLEX*16 TEMP1,TEMP2
1.1       bertrand  214:       INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
                    215: *     ..
                    216: *     .. External Functions ..
                    217:       LOGICAL LSAME
                    218:       EXTERNAL LSAME
                    219: *     ..
                    220: *     .. External Subroutines ..
                    221:       EXTERNAL XERBLA
                    222: *     ..
                    223: *     .. Intrinsic Functions ..
                    224:       INTRINSIC DBLE,DCONJG,MAX,MIN
                    225: *     ..
                    226: *
                    227: *     Test the input parameters.
                    228: *
                    229:       INFO = 0
                    230:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
                    231:           INFO = 1
                    232:       ELSE IF (N.LT.0) THEN
                    233:           INFO = 2
                    234:       ELSE IF (K.LT.0) THEN
                    235:           INFO = 3
                    236:       ELSE IF (LDA.LT. (K+1)) THEN
                    237:           INFO = 6
                    238:       ELSE IF (INCX.EQ.0) THEN
                    239:           INFO = 8
                    240:       ELSE IF (INCY.EQ.0) THEN
                    241:           INFO = 11
                    242:       END IF
                    243:       IF (INFO.NE.0) THEN
                    244:           CALL XERBLA('ZHBMV ',INFO)
                    245:           RETURN
                    246:       END IF
                    247: *
                    248: *     Quick return if possible.
                    249: *
                    250:       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
                    251: *
                    252: *     Set up the start points in  X  and  Y.
                    253: *
                    254:       IF (INCX.GT.0) THEN
                    255:           KX = 1
                    256:       ELSE
                    257:           KX = 1 - (N-1)*INCX
                    258:       END IF
                    259:       IF (INCY.GT.0) THEN
                    260:           KY = 1
                    261:       ELSE
                    262:           KY = 1 - (N-1)*INCY
                    263:       END IF
                    264: *
                    265: *     Start the operations. In this version the elements of the array A
                    266: *     are accessed sequentially with one pass through A.
                    267: *
                    268: *     First form  y := beta*y.
                    269: *
                    270:       IF (BETA.NE.ONE) THEN
                    271:           IF (INCY.EQ.1) THEN
                    272:               IF (BETA.EQ.ZERO) THEN
                    273:                   DO 10 I = 1,N
                    274:                       Y(I) = ZERO
                    275:    10             CONTINUE
                    276:               ELSE
                    277:                   DO 20 I = 1,N
                    278:                       Y(I) = BETA*Y(I)
                    279:    20             CONTINUE
                    280:               END IF
                    281:           ELSE
                    282:               IY = KY
                    283:               IF (BETA.EQ.ZERO) THEN
                    284:                   DO 30 I = 1,N
                    285:                       Y(IY) = ZERO
                    286:                       IY = IY + INCY
                    287:    30             CONTINUE
                    288:               ELSE
                    289:                   DO 40 I = 1,N
                    290:                       Y(IY) = BETA*Y(IY)
                    291:                       IY = IY + INCY
                    292:    40             CONTINUE
                    293:               END IF
                    294:           END IF
                    295:       END IF
                    296:       IF (ALPHA.EQ.ZERO) RETURN
                    297:       IF (LSAME(UPLO,'U')) THEN
                    298: *
                    299: *        Form  y  when upper triangle of A is stored.
                    300: *
                    301:           KPLUS1 = K + 1
                    302:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
                    303:               DO 60 J = 1,N
                    304:                   TEMP1 = ALPHA*X(J)
                    305:                   TEMP2 = ZERO
                    306:                   L = KPLUS1 - J
                    307:                   DO 50 I = MAX(1,J-K),J - 1
                    308:                       Y(I) = Y(I) + TEMP1*A(L+I,J)
                    309:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I)
                    310:    50             CONTINUE
                    311:                   Y(J) = Y(J) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2
                    312:    60         CONTINUE
                    313:           ELSE
                    314:               JX = KX
                    315:               JY = KY
                    316:               DO 80 J = 1,N
                    317:                   TEMP1 = ALPHA*X(JX)
                    318:                   TEMP2 = ZERO
                    319:                   IX = KX
                    320:                   IY = KY
                    321:                   L = KPLUS1 - J
                    322:                   DO 70 I = MAX(1,J-K),J - 1
                    323:                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
                    324:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX)
                    325:                       IX = IX + INCX
                    326:                       IY = IY + INCY
                    327:    70             CONTINUE
                    328:                   Y(JY) = Y(JY) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2
                    329:                   JX = JX + INCX
                    330:                   JY = JY + INCY
                    331:                   IF (J.GT.K) THEN
                    332:                       KX = KX + INCX
                    333:                       KY = KY + INCY
                    334:                   END IF
                    335:    80         CONTINUE
                    336:           END IF
                    337:       ELSE
                    338: *
                    339: *        Form  y  when lower triangle of A is stored.
                    340: *
                    341:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
                    342:               DO 100 J = 1,N
                    343:                   TEMP1 = ALPHA*X(J)
                    344:                   TEMP2 = ZERO
                    345:                   Y(J) = Y(J) + TEMP1*DBLE(A(1,J))
                    346:                   L = 1 - J
                    347:                   DO 90 I = J + 1,MIN(N,J+K)
                    348:                       Y(I) = Y(I) + TEMP1*A(L+I,J)
                    349:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I)
                    350:    90             CONTINUE
                    351:                   Y(J) = Y(J) + ALPHA*TEMP2
                    352:   100         CONTINUE
                    353:           ELSE
                    354:               JX = KX
                    355:               JY = KY
                    356:               DO 120 J = 1,N
                    357:                   TEMP1 = ALPHA*X(JX)
                    358:                   TEMP2 = ZERO
                    359:                   Y(JY) = Y(JY) + TEMP1*DBLE(A(1,J))
                    360:                   L = 1 - J
                    361:                   IX = JX
                    362:                   IY = JY
                    363:                   DO 110 I = J + 1,MIN(N,J+K)
                    364:                       IX = IX + INCX
                    365:                       IY = IY + INCY
                    366:                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
                    367:                       TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX)
                    368:   110             CONTINUE
                    369:                   Y(JY) = Y(JY) + ALPHA*TEMP2
                    370:                   JX = JX + INCX
                    371:                   JY = JY + INCY
                    372:   120         CONTINUE
                    373:           END IF
                    374:       END IF
                    375: *
                    376:       RETURN
                    377: *
                    378: *     End of ZHBMV .
                    379: *
                    380:       END

CVSweb interface <joel.bertrand@systella.fr>