version 1.3, 2010/08/06 15:32:20
|
version 1.16, 2018/05/29 07:19:42
|
Line 1
|
Line 1
|
SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
*> \brief \b ZGEMV |
* .. Scalar Arguments .. |
|
DOUBLE COMPLEX ALPHA,BETA |
|
INTEGER INCX,INCY,LDA,M,N |
|
CHARACTER TRANS |
|
* .. |
|
* .. Array Arguments .. |
|
DOUBLE COMPLEX A(LDA,*),X(*),Y(*) |
|
* .. |
|
* |
* |
* Purpose |
* =========== DOCUMENTATION =========== |
* ======= |
|
* |
* |
* ZGEMV performs one of the matrix-vector operations |
* Online html documentation available at |
|
* http://www.netlib.org/lapack/explore-html/ |
* |
* |
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or |
* Definition: |
|
* =========== |
|
* |
|
* SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
|
* |
|
* .. Scalar Arguments .. |
|
* COMPLEX*16 ALPHA,BETA |
|
* INTEGER INCX,INCY,LDA,M,N |
|
* CHARACTER TRANS |
|
* .. |
|
* .. Array Arguments .. |
|
* COMPLEX*16 A(LDA,*),X(*),Y(*) |
|
* .. |
|
* |
|
* |
|
*> \par Purpose: |
|
* ============= |
|
*> |
|
*> \verbatim |
|
*> |
|
*> ZGEMV performs one of the matrix-vector operations |
|
*> |
|
*> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or |
|
*> |
|
*> y := alpha*A**H*x + beta*y, |
|
*> |
|
*> where alpha and beta are scalars, x and y are vectors and A is an |
|
*> m by n matrix. |
|
*> \endverbatim |
* |
* |
* y := alpha*conjg( A' )*x + beta*y, |
* Arguments: |
|
* ========== |
* |
* |
* where alpha and beta are scalars, x and y are vectors and A is an |
*> \param[in] TRANS |
* m by n matrix. |
*> \verbatim |
|
*> TRANS is CHARACTER*1 |
|
*> On entry, TRANS specifies the operation to be performed as |
|
*> follows: |
|
*> |
|
*> TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
|
*> |
|
*> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. |
|
*> |
|
*> TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] M |
|
*> \verbatim |
|
*> M is INTEGER |
|
*> On entry, M specifies the number of rows of the matrix A. |
|
*> M must be at least zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] N |
|
*> \verbatim |
|
*> N is INTEGER |
|
*> On entry, N specifies the number of columns of the matrix A. |
|
*> N must be at least zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] ALPHA |
|
*> \verbatim |
|
*> ALPHA is COMPLEX*16 |
|
*> On entry, ALPHA specifies the scalar alpha. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] A |
|
*> \verbatim |
|
*> A is COMPLEX*16 array, dimension ( LDA, N ) |
|
*> Before entry, the leading m by n part of the array A must |
|
*> contain the matrix of coefficients. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDA |
|
*> \verbatim |
|
*> LDA is INTEGER |
|
*> On entry, LDA specifies the first dimension of A as declared |
|
*> in the calling (sub) program. LDA must be at least |
|
*> max( 1, m ). |
|
*> \endverbatim |
|
*> |
|
*> \param[in] X |
|
*> \verbatim |
|
*> X is COMPLEX*16 array, dimension at least |
|
*> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
|
*> and at least |
|
*> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
|
*> Before entry, the incremented array X must contain the |
|
*> vector x. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] INCX |
|
*> \verbatim |
|
*> INCX is INTEGER |
|
*> On entry, INCX specifies the increment for the elements of |
|
*> X. INCX must not be zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] BETA |
|
*> \verbatim |
|
*> BETA is COMPLEX*16 |
|
*> On entry, BETA specifies the scalar beta. When BETA is |
|
*> supplied as zero then Y need not be set on input. |
|
*> \endverbatim |
|
*> |
|
*> \param[in,out] Y |
|
*> \verbatim |
|
*> Y is COMPLEX*16 array, dimension at least |
|
*> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
|
*> and at least |
|
*> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
|
*> Before entry with BETA non-zero, the incremented array Y |
|
*> must contain the vector y. On exit, Y is overwritten by the |
|
*> updated vector y. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] INCY |
|
*> \verbatim |
|
*> INCY is INTEGER |
|
*> On entry, INCY specifies the increment for the elements of |
|
*> Y. INCY must not be zero. |
|
*> \endverbatim |
|
* |
|
* Authors: |
|
* ======== |
|
* |
|
*> \author Univ. of Tennessee |
|
*> \author Univ. of California Berkeley |
|
*> \author Univ. of Colorado Denver |
|
*> \author NAG Ltd. |
|
* |
|
*> \date December 2016 |
|
* |
|
*> \ingroup complex16_blas_level2 |
|
* |
|
*> \par Further Details: |
|
* ===================== |
|
*> |
|
*> \verbatim |
|
*> |
|
*> Level 2 Blas routine. |
|
*> The vector and matrix arguments are not referenced when N = 0, or M = 0 |
|
*> |
|
*> -- Written on 22-October-1986. |
|
*> Jack Dongarra, Argonne National Lab. |
|
*> Jeremy Du Croz, Nag Central Office. |
|
*> Sven Hammarling, Nag Central Office. |
|
*> Richard Hanson, Sandia National Labs. |
|
*> \endverbatim |
|
*> |
|
* ===================================================================== |
|
SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
* |
* |
* Arguments |
* -- Reference BLAS level2 routine (version 3.7.0) -- |
* ========== |
* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- |
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
|
* December 2016 |
* |
* |
* TRANS - CHARACTER*1. |
* .. Scalar Arguments .. |
* On entry, TRANS specifies the operation to be performed as |
COMPLEX*16 ALPHA,BETA |
* follows: |
INTEGER INCX,INCY,LDA,M,N |
* |
CHARACTER TRANS |
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
* .. |
* |
* .. Array Arguments .. |
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. |
COMPLEX*16 A(LDA,*),X(*),Y(*) |
* |
* .. |
* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. |
|
* |
|
* Unchanged on exit. |
|
* |
|
* M - INTEGER. |
|
* On entry, M specifies the number of rows of the matrix A. |
|
* M must be at least zero. |
|
* Unchanged on exit. |
|
* |
|
* N - INTEGER. |
|
* On entry, N specifies the number of columns of the matrix A. |
|
* N must be at least zero. |
|
* Unchanged on exit. |
|
* |
|
* ALPHA - COMPLEX*16 . |
|
* On entry, ALPHA specifies the scalar alpha. |
|
* Unchanged on exit. |
|
* |
|
* A - COMPLEX*16 array of DIMENSION ( LDA, n ). |
|
* Before entry, the leading m by n part of the array A must |
|
* contain the matrix of coefficients. |
|
* Unchanged on exit. |
|
* |
|
* LDA - INTEGER. |
|
* On entry, LDA specifies the first dimension of A as declared |
|
* in the calling (sub) program. LDA must be at least |
|
* max( 1, m ). |
|
* Unchanged on exit. |
|
* |
|
* X - COMPLEX*16 array of DIMENSION at least |
|
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
|
* and at least |
|
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
|
* Before entry, the incremented array X must contain the |
|
* vector x. |
|
* Unchanged on exit. |
|
* |
|
* INCX - INTEGER. |
|
* On entry, INCX specifies the increment for the elements of |
|
* X. INCX must not be zero. |
|
* Unchanged on exit. |
|
* |
|
* BETA - COMPLEX*16 . |
|
* On entry, BETA specifies the scalar beta. When BETA is |
|
* supplied as zero then Y need not be set on input. |
|
* Unchanged on exit. |
|
* |
|
* Y - COMPLEX*16 array of DIMENSION at least |
|
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
|
* and at least |
|
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
|
* Before entry with BETA non-zero, the incremented array Y |
|
* must contain the vector y. On exit, Y is overwritten by the |
|
* updated vector y. |
|
* |
|
* INCY - INTEGER. |
|
* On entry, INCY specifies the increment for the elements of |
|
* Y. INCY must not be zero. |
|
* Unchanged on exit. |
|
* |
|
* Further Details |
|
* =============== |
|
* |
|
* Level 2 Blas routine. |
|
* |
|
* -- Written on 22-October-1986. |
|
* Jack Dongarra, Argonne National Lab. |
|
* Jeremy Du Croz, Nag Central Office. |
|
* Sven Hammarling, Nag Central Office. |
|
* Richard Hanson, Sandia National Labs. |
|
* |
* |
* ===================================================================== |
* ===================================================================== |
* |
* |
* .. Parameters .. |
* .. Parameters .. |
DOUBLE COMPLEX ONE |
COMPLEX*16 ONE |
PARAMETER (ONE= (1.0D+0,0.0D+0)) |
PARAMETER (ONE= (1.0D+0,0.0D+0)) |
DOUBLE COMPLEX ZERO |
COMPLEX*16 ZERO |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
* .. |
* .. |
* .. Local Scalars .. |
* .. Local Scalars .. |
DOUBLE COMPLEX TEMP |
COMPLEX*16 TEMP |
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY |
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY |
LOGICAL NOCONJ |
LOGICAL NOCONJ |
* .. |
* .. |
Line 215
|
Line 285
|
JX = KX |
JX = KX |
IF (INCY.EQ.1) THEN |
IF (INCY.EQ.1) THEN |
DO 60 J = 1,N |
DO 60 J = 1,N |
IF (X(JX).NE.ZERO) THEN |
TEMP = ALPHA*X(JX) |
TEMP = ALPHA*X(JX) |
DO 50 I = 1,M |
DO 50 I = 1,M |
Y(I) = Y(I) + TEMP*A(I,J) |
Y(I) = Y(I) + TEMP*A(I,J) |
50 CONTINUE |
50 CONTINUE |
|
END IF |
|
JX = JX + INCX |
JX = JX + INCX |
60 CONTINUE |
60 CONTINUE |
ELSE |
ELSE |
DO 80 J = 1,N |
DO 80 J = 1,N |
IF (X(JX).NE.ZERO) THEN |
TEMP = ALPHA*X(JX) |
TEMP = ALPHA*X(JX) |
IY = KY |
IY = KY |
DO 70 I = 1,M |
DO 70 I = 1,M |
Y(IY) = Y(IY) + TEMP*A(I,J) |
Y(IY) = Y(IY) + TEMP*A(I,J) |
IY = IY + INCY |
IY = IY + INCY |
70 CONTINUE |
70 CONTINUE |
|
END IF |
|
JX = JX + INCX |
JX = JX + INCX |
80 CONTINUE |
80 CONTINUE |
END IF |
END IF |
ELSE |
ELSE |
* |
* |
* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. |
* Form y := alpha*A**T*x + y or y := alpha*A**H*x + y. |
* |
* |
JY = KY |
JY = KY |
IF (INCX.EQ.1) THEN |
IF (INCX.EQ.1) THEN |