Diff for /rpl/lapack/blas/zgemv.f between versions 1.3 and 1.16

version 1.3, 2010/08/06 15:32:20 version 1.16, 2018/05/29 07:19:42
Line 1 Line 1
       SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)  *> \brief \b ZGEMV
 *     .. Scalar Arguments ..  
       DOUBLE COMPLEX ALPHA,BETA  
       INTEGER INCX,INCY,LDA,M,N  
       CHARACTER TRANS  
 *     ..  
 *     .. Array Arguments ..  
       DOUBLE COMPLEX A(LDA,*),X(*),Y(*)  
 *     ..  
 *  *
 *  Purpose  *  =========== DOCUMENTATION ===========
 *  =======  
 *  *
 *  ZGEMV  performs one of the matrix-vector operations  * Online html documentation available at
   *            http://www.netlib.org/lapack/explore-html/
 *  *
 *     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   or  *  Definition:
   *  ===========
   *
   *       SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
   *
   *       .. Scalar Arguments ..
   *       COMPLEX*16 ALPHA,BETA
   *       INTEGER INCX,INCY,LDA,M,N
   *       CHARACTER TRANS
   *       ..
   *       .. Array Arguments ..
   *       COMPLEX*16 A(LDA,*),X(*),Y(*)
   *       ..
   *
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> ZGEMV  performs one of the matrix-vector operations
   *>
   *>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or
   *>
   *>    y := alpha*A**H*x + beta*y,
   *>
   *> where alpha and beta are scalars, x and y are vectors and A is an
   *> m by n matrix.
   *> \endverbatim
 *  *
 *     y := alpha*conjg( A' )*x + beta*y,  *  Arguments:
   *  ==========
 *  *
 *  where alpha and beta are scalars, x and y are vectors and A is an  *> \param[in] TRANS
 *  m by n matrix.  *> \verbatim
   *>          TRANS is CHARACTER*1
   *>           On entry, TRANS specifies the operation to be performed as
   *>           follows:
   *>
   *>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
   *>
   *>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
   *>
   *>              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y.
   *> \endverbatim
   *>
   *> \param[in] M
   *> \verbatim
   *>          M is INTEGER
   *>           On entry, M specifies the number of rows of the matrix A.
   *>           M must be at least zero.
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>           On entry, N specifies the number of columns of the matrix A.
   *>           N must be at least zero.
   *> \endverbatim
   *>
   *> \param[in] ALPHA
   *> \verbatim
   *>          ALPHA is COMPLEX*16
   *>           On entry, ALPHA specifies the scalar alpha.
   *> \endverbatim
   *>
   *> \param[in] A
   *> \verbatim
   *>          A is COMPLEX*16 array, dimension ( LDA, N )
   *>           Before entry, the leading m by n part of the array A must
   *>           contain the matrix of coefficients.
   *> \endverbatim
   *>
   *> \param[in] LDA
   *> \verbatim
   *>          LDA is INTEGER
   *>           On entry, LDA specifies the first dimension of A as declared
   *>           in the calling (sub) program. LDA must be at least
   *>           max( 1, m ).
   *> \endverbatim
   *>
   *> \param[in] X
   *> \verbatim
   *>          X is COMPLEX*16 array, dimension at least
   *>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
   *>           and at least
   *>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
   *>           Before entry, the incremented array X must contain the
   *>           vector x.
   *> \endverbatim
   *>
   *> \param[in] INCX
   *> \verbatim
   *>          INCX is INTEGER
   *>           On entry, INCX specifies the increment for the elements of
   *>           X. INCX must not be zero.
   *> \endverbatim
   *>
   *> \param[in] BETA
   *> \verbatim
   *>          BETA is COMPLEX*16
   *>           On entry, BETA specifies the scalar beta. When BETA is
   *>           supplied as zero then Y need not be set on input.
   *> \endverbatim
   *>
   *> \param[in,out] Y
   *> \verbatim
   *>          Y is COMPLEX*16 array, dimension at least
   *>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
   *>           and at least
   *>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
   *>           Before entry with BETA non-zero, the incremented array Y
   *>           must contain the vector y. On exit, Y is overwritten by the
   *>           updated vector y.
   *> \endverbatim
   *>
   *> \param[in] INCY
   *> \verbatim
   *>          INCY is INTEGER
   *>           On entry, INCY specifies the increment for the elements of
   *>           Y. INCY must not be zero.
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee
   *> \author Univ. of California Berkeley
   *> \author Univ. of Colorado Denver
   *> \author NAG Ltd.
   *
   *> \date December 2016
   *
   *> \ingroup complex16_blas_level2
   *
   *> \par Further Details:
   *  =====================
   *>
   *> \verbatim
   *>
   *>  Level 2 Blas routine.
   *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
   *>
   *>  -- Written on 22-October-1986.
   *>     Jack Dongarra, Argonne National Lab.
   *>     Jeremy Du Croz, Nag Central Office.
   *>     Sven Hammarling, Nag Central Office.
   *>     Richard Hanson, Sandia National Labs.
   *> \endverbatim
   *>
   *  =====================================================================
         SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
 *  *
 *  Arguments  *  -- Reference BLAS level2 routine (version 3.7.0) --
 *  ==========  *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
   *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   *     December 2016
 *  *
 *  TRANS  - CHARACTER*1.  *     .. Scalar Arguments ..
 *           On entry, TRANS specifies the operation to be performed as        COMPLEX*16 ALPHA,BETA
 *           follows:        INTEGER INCX,INCY,LDA,M,N
 *        CHARACTER TRANS
 *              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.  *     ..
 *  *     .. Array Arguments ..
 *              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.        COMPLEX*16 A(LDA,*),X(*),Y(*)
 *  *     ..
 *              TRANS = 'C' or 'c'   y := alpha*conjg( A' )*x + beta*y.  
 *  
 *           Unchanged on exit.  
 *  
 *  M      - INTEGER.  
 *           On entry, M specifies the number of rows of the matrix A.  
 *           M must be at least zero.  
 *           Unchanged on exit.  
 *  
 *  N      - INTEGER.  
 *           On entry, N specifies the number of columns of the matrix A.  
 *           N must be at least zero.  
 *           Unchanged on exit.  
 *  
 *  ALPHA  - COMPLEX*16      .  
 *           On entry, ALPHA specifies the scalar alpha.  
 *           Unchanged on exit.  
 *  
 *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).  
 *           Before entry, the leading m by n part of the array A must  
 *           contain the matrix of coefficients.  
 *           Unchanged on exit.  
 *  
 *  LDA    - INTEGER.  
 *           On entry, LDA specifies the first dimension of A as declared  
 *           in the calling (sub) program. LDA must be at least  
 *           max( 1, m ).  
 *           Unchanged on exit.  
 *  
 *  X      - COMPLEX*16       array of DIMENSION at least  
 *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'  
 *           and at least  
 *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.  
 *           Before entry, the incremented array X must contain the  
 *           vector x.  
 *           Unchanged on exit.  
 *  
 *  INCX   - INTEGER.  
 *           On entry, INCX specifies the increment for the elements of  
 *           X. INCX must not be zero.  
 *           Unchanged on exit.  
 *  
 *  BETA   - COMPLEX*16      .  
 *           On entry, BETA specifies the scalar beta. When BETA is  
 *           supplied as zero then Y need not be set on input.  
 *           Unchanged on exit.  
 *  
 *  Y      - COMPLEX*16       array of DIMENSION at least  
 *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'  
 *           and at least  
 *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.  
 *           Before entry with BETA non-zero, the incremented array Y  
 *           must contain the vector y. On exit, Y is overwritten by the  
 *           updated vector y.  
 *  
 *  INCY   - INTEGER.  
 *           On entry, INCY specifies the increment for the elements of  
 *           Y. INCY must not be zero.  
 *           Unchanged on exit.  
 *  
 *  Further Details  
 *  ===============  
 *  
 *  Level 2 Blas routine.  
 *  
 *  -- Written on 22-October-1986.  
 *     Jack Dongarra, Argonne National Lab.  
 *     Jeremy Du Croz, Nag Central Office.  
 *     Sven Hammarling, Nag Central Office.  
 *     Richard Hanson, Sandia National Labs.  
 *  *
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Parameters ..  *     .. Parameters ..
       DOUBLE COMPLEX ONE        COMPLEX*16 ONE
       PARAMETER (ONE= (1.0D+0,0.0D+0))        PARAMETER (ONE= (1.0D+0,0.0D+0))
       DOUBLE COMPLEX ZERO        COMPLEX*16 ZERO
       PARAMETER (ZERO= (0.0D+0,0.0D+0))        PARAMETER (ZERO= (0.0D+0,0.0D+0))
 *     ..  *     ..
 *     .. Local Scalars ..  *     .. Local Scalars ..
       DOUBLE COMPLEX TEMP        COMPLEX*16 TEMP
       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY        INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
       LOGICAL NOCONJ        LOGICAL NOCONJ
 *     ..  *     ..
Line 215 Line 285
           JX = KX            JX = KX
           IF (INCY.EQ.1) THEN            IF (INCY.EQ.1) THEN
               DO 60 J = 1,N                DO 60 J = 1,N
                   IF (X(JX).NE.ZERO) THEN                    TEMP = ALPHA*X(JX)
                       TEMP = ALPHA*X(JX)                    DO 50 I = 1,M
                       DO 50 I = 1,M                        Y(I) = Y(I) + TEMP*A(I,J)
                           Y(I) = Y(I) + TEMP*A(I,J)     50             CONTINUE
    50                 CONTINUE  
                   END IF  
                   JX = JX + INCX                    JX = JX + INCX
    60         CONTINUE     60         CONTINUE
           ELSE            ELSE
               DO 80 J = 1,N                DO 80 J = 1,N
                   IF (X(JX).NE.ZERO) THEN                    TEMP = ALPHA*X(JX)
                       TEMP = ALPHA*X(JX)                    IY = KY
                       IY = KY                    DO 70 I = 1,M
                       DO 70 I = 1,M                        Y(IY) = Y(IY) + TEMP*A(I,J)
                           Y(IY) = Y(IY) + TEMP*A(I,J)                        IY = IY + INCY
                           IY = IY + INCY     70             CONTINUE
    70                 CONTINUE  
                   END IF  
                   JX = JX + INCX                    JX = JX + INCX
    80         CONTINUE     80         CONTINUE
           END IF            END IF
       ELSE        ELSE
 *  *
 *        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y.  *        Form  y := alpha*A**T*x + y  or  y := alpha*A**H*x + y.
 *  *
           JY = KY            JY = KY
           IF (INCX.EQ.1) THEN            IF (INCX.EQ.1) THEN

Removed from v.1.3  
changed lines
  Added in v.1.16


CVSweb interface <joel.bertrand@systella.fr>