version 1.5, 2010/08/13 21:03:41
|
version 1.11, 2014/01/27 09:28:14
|
Line 1
|
Line 1
|
SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
*> \brief \b ZGEMM |
* .. Scalar Arguments .. |
|
DOUBLE COMPLEX ALPHA,BETA |
|
INTEGER K,LDA,LDB,LDC,M,N |
|
CHARACTER TRANSA,TRANSB |
|
* .. |
|
* .. Array Arguments .. |
|
DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) |
|
* .. |
|
* |
* |
* Purpose |
* =========== DOCUMENTATION =========== |
* ======= |
|
* |
* |
* ZGEMM performs one of the matrix-matrix operations |
* Online html documentation available at |
|
* http://www.netlib.org/lapack/explore-html/ |
* |
* |
* C := alpha*op( A )*op( B ) + beta*C, |
* Definition: |
|
* =========== |
|
* |
|
* SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
|
* |
|
* .. Scalar Arguments .. |
|
* COMPLEX*16 ALPHA,BETA |
|
* INTEGER K,LDA,LDB,LDC,M,N |
|
* CHARACTER TRANSA,TRANSB |
|
* .. |
|
* .. Array Arguments .. |
|
* COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*) |
|
* .. |
|
* |
|
* |
|
*> \par Purpose: |
|
* ============= |
|
*> |
|
*> \verbatim |
|
*> |
|
*> ZGEMM performs one of the matrix-matrix operations |
|
*> |
|
*> C := alpha*op( A )*op( B ) + beta*C, |
|
*> |
|
*> where op( X ) is one of |
|
*> |
|
*> op( X ) = X or op( X ) = X**T or op( X ) = X**H, |
|
*> |
|
*> alpha and beta are scalars, and A, B and C are matrices, with op( A ) |
|
*> an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. |
|
*> \endverbatim |
* |
* |
* where op( X ) is one of |
* Arguments: |
* |
* ========== |
* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), |
|
* |
* |
* alpha and beta are scalars, and A, B and C are matrices, with op( A ) |
*> \param[in] TRANSA |
* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. |
*> \verbatim |
|
*> TRANSA is CHARACTER*1 |
|
*> On entry, TRANSA specifies the form of op( A ) to be used in |
|
*> the matrix multiplication as follows: |
|
*> |
|
*> TRANSA = 'N' or 'n', op( A ) = A. |
|
*> |
|
*> TRANSA = 'T' or 't', op( A ) = A**T. |
|
*> |
|
*> TRANSA = 'C' or 'c', op( A ) = A**H. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] TRANSB |
|
*> \verbatim |
|
*> TRANSB is CHARACTER*1 |
|
*> On entry, TRANSB specifies the form of op( B ) to be used in |
|
*> the matrix multiplication as follows: |
|
*> |
|
*> TRANSB = 'N' or 'n', op( B ) = B. |
|
*> |
|
*> TRANSB = 'T' or 't', op( B ) = B**T. |
|
*> |
|
*> TRANSB = 'C' or 'c', op( B ) = B**H. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] M |
|
*> \verbatim |
|
*> M is INTEGER |
|
*> On entry, M specifies the number of rows of the matrix |
|
*> op( A ) and of the matrix C. M must be at least zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] N |
|
*> \verbatim |
|
*> N is INTEGER |
|
*> On entry, N specifies the number of columns of the matrix |
|
*> op( B ) and the number of columns of the matrix C. N must be |
|
*> at least zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] K |
|
*> \verbatim |
|
*> K is INTEGER |
|
*> On entry, K specifies the number of columns of the matrix |
|
*> op( A ) and the number of rows of the matrix op( B ). K must |
|
*> be at least zero. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] ALPHA |
|
*> \verbatim |
|
*> ALPHA is COMPLEX*16 |
|
*> On entry, ALPHA specifies the scalar alpha. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] A |
|
*> \verbatim |
|
*> A is COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is |
|
*> k when TRANSA = 'N' or 'n', and is m otherwise. |
|
*> Before entry with TRANSA = 'N' or 'n', the leading m by k |
|
*> part of the array A must contain the matrix A, otherwise |
|
*> the leading k by m part of the array A must contain the |
|
*> matrix A. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDA |
|
*> \verbatim |
|
*> LDA is INTEGER |
|
*> On entry, LDA specifies the first dimension of A as declared |
|
*> in the calling (sub) program. When TRANSA = 'N' or 'n' then |
|
*> LDA must be at least max( 1, m ), otherwise LDA must be at |
|
*> least max( 1, k ). |
|
*> \endverbatim |
|
*> |
|
*> \param[in] B |
|
*> \verbatim |
|
*> B is COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is |
|
*> n when TRANSB = 'N' or 'n', and is k otherwise. |
|
*> Before entry with TRANSB = 'N' or 'n', the leading k by n |
|
*> part of the array B must contain the matrix B, otherwise |
|
*> the leading n by k part of the array B must contain the |
|
*> matrix B. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDB |
|
*> \verbatim |
|
*> LDB is INTEGER |
|
*> On entry, LDB specifies the first dimension of B as declared |
|
*> in the calling (sub) program. When TRANSB = 'N' or 'n' then |
|
*> LDB must be at least max( 1, k ), otherwise LDB must be at |
|
*> least max( 1, n ). |
|
*> \endverbatim |
|
*> |
|
*> \param[in] BETA |
|
*> \verbatim |
|
*> BETA is COMPLEX*16 |
|
*> On entry, BETA specifies the scalar beta. When BETA is |
|
*> supplied as zero then C need not be set on input. |
|
*> \endverbatim |
|
*> |
|
*> \param[in,out] C |
|
*> \verbatim |
|
*> C is COMPLEX*16 array of DIMENSION ( LDC, n ). |
|
*> Before entry, the leading m by n part of the array C must |
|
*> contain the matrix C, except when beta is zero, in which |
|
*> case C need not be set on entry. |
|
*> On exit, the array C is overwritten by the m by n matrix |
|
*> ( alpha*op( A )*op( B ) + beta*C ). |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDC |
|
*> \verbatim |
|
*> LDC is INTEGER |
|
*> On entry, LDC specifies the first dimension of C as declared |
|
*> in the calling (sub) program. LDC must be at least |
|
*> max( 1, m ). |
|
*> \endverbatim |
|
* |
|
* Authors: |
|
* ======== |
|
* |
|
*> \author Univ. of Tennessee |
|
*> \author Univ. of California Berkeley |
|
*> \author Univ. of Colorado Denver |
|
*> \author NAG Ltd. |
|
* |
|
*> \date November 2011 |
|
* |
|
*> \ingroup complex16_blas_level3 |
|
* |
|
*> \par Further Details: |
|
* ===================== |
|
*> |
|
*> \verbatim |
|
*> |
|
*> Level 3 Blas routine. |
|
*> |
|
*> -- Written on 8-February-1989. |
|
*> Jack Dongarra, Argonne National Laboratory. |
|
*> Iain Duff, AERE Harwell. |
|
*> Jeremy Du Croz, Numerical Algorithms Group Ltd. |
|
*> Sven Hammarling, Numerical Algorithms Group Ltd. |
|
*> \endverbatim |
|
*> |
|
* ===================================================================== |
|
SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
* |
* |
* Arguments |
* -- Reference BLAS level3 routine (version 3.4.0) -- |
* ========== |
* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- |
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
|
* November 2011 |
* |
* |
* TRANSA - CHARACTER*1. |
* .. Scalar Arguments .. |
* On entry, TRANSA specifies the form of op( A ) to be used in |
COMPLEX*16 ALPHA,BETA |
* the matrix multiplication as follows: |
INTEGER K,LDA,LDB,LDC,M,N |
* |
CHARACTER TRANSA,TRANSB |
* TRANSA = 'N' or 'n', op( A ) = A. |
* .. |
* |
* .. Array Arguments .. |
* TRANSA = 'T' or 't', op( A ) = A'. |
COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*) |
* |
* .. |
* TRANSA = 'C' or 'c', op( A ) = conjg( A' ). |
|
* |
|
* Unchanged on exit. |
|
* |
|
* TRANSB - CHARACTER*1. |
|
* On entry, TRANSB specifies the form of op( B ) to be used in |
|
* the matrix multiplication as follows: |
|
* |
|
* TRANSB = 'N' or 'n', op( B ) = B. |
|
* |
|
* TRANSB = 'T' or 't', op( B ) = B'. |
|
* |
|
* TRANSB = 'C' or 'c', op( B ) = conjg( B' ). |
|
* |
|
* Unchanged on exit. |
|
* |
|
* M - INTEGER. |
|
* On entry, M specifies the number of rows of the matrix |
|
* op( A ) and of the matrix C. M must be at least zero. |
|
* Unchanged on exit. |
|
* |
|
* N - INTEGER. |
|
* On entry, N specifies the number of columns of the matrix |
|
* op( B ) and the number of columns of the matrix C. N must be |
|
* at least zero. |
|
* Unchanged on exit. |
|
* |
|
* K - INTEGER. |
|
* On entry, K specifies the number of columns of the matrix |
|
* op( A ) and the number of rows of the matrix op( B ). K must |
|
* be at least zero. |
|
* Unchanged on exit. |
|
* |
|
* ALPHA - COMPLEX*16 . |
|
* On entry, ALPHA specifies the scalar alpha. |
|
* Unchanged on exit. |
|
* |
|
* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is |
|
* k when TRANSA = 'N' or 'n', and is m otherwise. |
|
* Before entry with TRANSA = 'N' or 'n', the leading m by k |
|
* part of the array A must contain the matrix A, otherwise |
|
* the leading k by m part of the array A must contain the |
|
* matrix A. |
|
* Unchanged on exit. |
|
* |
|
* LDA - INTEGER. |
|
* On entry, LDA specifies the first dimension of A as declared |
|
* in the calling (sub) program. When TRANSA = 'N' or 'n' then |
|
* LDA must be at least max( 1, m ), otherwise LDA must be at |
|
* least max( 1, k ). |
|
* Unchanged on exit. |
|
* |
|
* B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is |
|
* n when TRANSB = 'N' or 'n', and is k otherwise. |
|
* Before entry with TRANSB = 'N' or 'n', the leading k by n |
|
* part of the array B must contain the matrix B, otherwise |
|
* the leading n by k part of the array B must contain the |
|
* matrix B. |
|
* Unchanged on exit. |
|
* |
|
* LDB - INTEGER. |
|
* On entry, LDB specifies the first dimension of B as declared |
|
* in the calling (sub) program. When TRANSB = 'N' or 'n' then |
|
* LDB must be at least max( 1, k ), otherwise LDB must be at |
|
* least max( 1, n ). |
|
* Unchanged on exit. |
|
* |
|
* BETA - COMPLEX*16 . |
|
* On entry, BETA specifies the scalar beta. When BETA is |
|
* supplied as zero then C need not be set on input. |
|
* Unchanged on exit. |
|
* |
|
* C - COMPLEX*16 array of DIMENSION ( LDC, n ). |
|
* Before entry, the leading m by n part of the array C must |
|
* contain the matrix C, except when beta is zero, in which |
|
* case C need not be set on entry. |
|
* On exit, the array C is overwritten by the m by n matrix |
|
* ( alpha*op( A )*op( B ) + beta*C ). |
|
* |
|
* LDC - INTEGER. |
|
* On entry, LDC specifies the first dimension of C as declared |
|
* in the calling (sub) program. LDC must be at least |
|
* max( 1, m ). |
|
* Unchanged on exit. |
|
* |
|
* Further Details |
|
* =============== |
|
* |
|
* Level 3 Blas routine. |
|
* |
|
* -- Written on 8-February-1989. |
|
* Jack Dongarra, Argonne National Laboratory. |
|
* Iain Duff, AERE Harwell. |
|
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
|
* Sven Hammarling, Numerical Algorithms Group Ltd. |
|
* |
* |
* ===================================================================== |
* ===================================================================== |
* |
* |
Line 142
|
Line 214
|
INTRINSIC DCONJG,MAX |
INTRINSIC DCONJG,MAX |
* .. |
* .. |
* .. Local Scalars .. |
* .. Local Scalars .. |
DOUBLE COMPLEX TEMP |
COMPLEX*16 TEMP |
INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB |
INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB |
LOGICAL CONJA,CONJB,NOTA,NOTB |
LOGICAL CONJA,CONJB,NOTA,NOTB |
* .. |
* .. |
* .. Parameters .. |
* .. Parameters .. |
DOUBLE COMPLEX ONE |
COMPLEX*16 ONE |
PARAMETER (ONE= (1.0D+0,0.0D+0)) |
PARAMETER (ONE= (1.0D+0,0.0D+0)) |
DOUBLE COMPLEX ZERO |
COMPLEX*16 ZERO |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
* .. |
* .. |
* |
* |
Line 255
|
Line 327
|
90 CONTINUE |
90 CONTINUE |
ELSE IF (CONJA) THEN |
ELSE IF (CONJA) THEN |
* |
* |
* Form C := alpha*conjg( A' )*B + beta*C. |
* Form C := alpha*A**H*B + beta*C. |
* |
* |
DO 120 J = 1,N |
DO 120 J = 1,N |
DO 110 I = 1,M |
DO 110 I = 1,M |
Line 272
|
Line 344
|
120 CONTINUE |
120 CONTINUE |
ELSE |
ELSE |
* |
* |
* Form C := alpha*A'*B + beta*C |
* Form C := alpha*A**T*B + beta*C |
* |
* |
DO 150 J = 1,N |
DO 150 J = 1,N |
DO 140 I = 1,M |
DO 140 I = 1,M |
Line 291
|
Line 363
|
ELSE IF (NOTA) THEN |
ELSE IF (NOTA) THEN |
IF (CONJB) THEN |
IF (CONJB) THEN |
* |
* |
* Form C := alpha*A*conjg( B' ) + beta*C. |
* Form C := alpha*A*B**H + beta*C. |
* |
* |
DO 200 J = 1,N |
DO 200 J = 1,N |
IF (BETA.EQ.ZERO) THEN |
IF (BETA.EQ.ZERO) THEN |
Line 314
|
Line 386
|
200 CONTINUE |
200 CONTINUE |
ELSE |
ELSE |
* |
* |
* Form C := alpha*A*B' + beta*C |
* Form C := alpha*A*B**T + beta*C |
* |
* |
DO 250 J = 1,N |
DO 250 J = 1,N |
IF (BETA.EQ.ZERO) THEN |
IF (BETA.EQ.ZERO) THEN |
Line 339
|
Line 411
|
ELSE IF (CONJA) THEN |
ELSE IF (CONJA) THEN |
IF (CONJB) THEN |
IF (CONJB) THEN |
* |
* |
* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. |
* Form C := alpha*A**H*B**H + beta*C. |
* |
* |
DO 280 J = 1,N |
DO 280 J = 1,N |
DO 270 I = 1,M |
DO 270 I = 1,M |
Line 356
|
Line 428
|
280 CONTINUE |
280 CONTINUE |
ELSE |
ELSE |
* |
* |
* Form C := alpha*conjg( A' )*B' + beta*C |
* Form C := alpha*A**H*B**T + beta*C |
* |
* |
DO 310 J = 1,N |
DO 310 J = 1,N |
DO 300 I = 1,M |
DO 300 I = 1,M |
Line 375
|
Line 447
|
ELSE |
ELSE |
IF (CONJB) THEN |
IF (CONJB) THEN |
* |
* |
* Form C := alpha*A'*conjg( B' ) + beta*C |
* Form C := alpha*A**T*B**H + beta*C |
* |
* |
DO 340 J = 1,N |
DO 340 J = 1,N |
DO 330 I = 1,M |
DO 330 I = 1,M |
Line 392
|
Line 464
|
340 CONTINUE |
340 CONTINUE |
ELSE |
ELSE |
* |
* |
* Form C := alpha*A'*B' + beta*C |
* Form C := alpha*A**T*B**T + beta*C |
* |
* |
DO 370 J = 1,N |
DO 370 J = 1,N |
DO 360 I = 1,M |
DO 360 I = 1,M |