File:  [local] / rpl / lapack / blas / dtrsv.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:44 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTRSV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
   12: *
   13: *       .. Scalar Arguments ..
   14: *       INTEGER INCX,LDA,N
   15: *       CHARACTER DIAG,TRANS,UPLO
   16: *       ..
   17: *       .. Array Arguments ..
   18: *       DOUBLE PRECISION A(LDA,*),X(*)
   19: *       ..
   20: *
   21: *
   22: *> \par Purpose:
   23: *  =============
   24: *>
   25: *> \verbatim
   26: *>
   27: *> DTRSV  solves one of the systems of equations
   28: *>
   29: *>    A*x = b,   or   A**T*x = b,
   30: *>
   31: *> where b and x are n element vectors and A is an n by n unit, or
   32: *> non-unit, upper or lower triangular matrix.
   33: *>
   34: *> No test for singularity or near-singularity is included in this
   35: *> routine. Such tests must be performed before calling this routine.
   36: *> \endverbatim
   37: *
   38: *  Arguments:
   39: *  ==========
   40: *
   41: *> \param[in] UPLO
   42: *> \verbatim
   43: *>          UPLO is CHARACTER*1
   44: *>           On entry, UPLO specifies whether the matrix is an upper or
   45: *>           lower triangular matrix as follows:
   46: *>
   47: *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   48: *>
   49: *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] TRANS
   53: *> \verbatim
   54: *>          TRANS is CHARACTER*1
   55: *>           On entry, TRANS specifies the equations to be solved as
   56: *>           follows:
   57: *>
   58: *>              TRANS = 'N' or 'n'   A*x = b.
   59: *>
   60: *>              TRANS = 'T' or 't'   A**T*x = b.
   61: *>
   62: *>              TRANS = 'C' or 'c'   A**T*x = b.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] DIAG
   66: *> \verbatim
   67: *>          DIAG is CHARACTER*1
   68: *>           On entry, DIAG specifies whether or not A is unit
   69: *>           triangular as follows:
   70: *>
   71: *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   72: *>
   73: *>              DIAG = 'N' or 'n'   A is not assumed to be unit
   74: *>                                  triangular.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] N
   78: *> \verbatim
   79: *>          N is INTEGER
   80: *>           On entry, N specifies the order of the matrix A.
   81: *>           N must be at least zero.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] A
   85: *> \verbatim
   86: *>          A is DOUBLE PRECISION array, dimension ( LDA, N )
   87: *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
   88: *>           upper triangular part of the array A must contain the upper
   89: *>           triangular matrix and the strictly lower triangular part of
   90: *>           A is not referenced.
   91: *>           Before entry with UPLO = 'L' or 'l', the leading n by n
   92: *>           lower triangular part of the array A must contain the lower
   93: *>           triangular matrix and the strictly upper triangular part of
   94: *>           A is not referenced.
   95: *>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
   96: *>           A are not referenced either, but are assumed to be unity.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDA
  100: *> \verbatim
  101: *>          LDA is INTEGER
  102: *>           On entry, LDA specifies the first dimension of A as declared
  103: *>           in the calling (sub) program. LDA must be at least
  104: *>           max( 1, n ).
  105: *> \endverbatim
  106: *>
  107: *> \param[in,out] X
  108: *> \verbatim
  109: *>          X is DOUBLE PRECISION array, dimension at least
  110: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
  111: *>           Before entry, the incremented array X must contain the n
  112: *>           element right-hand side vector b. On exit, X is overwritten
  113: *>           with the solution vector x.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] INCX
  117: *> \verbatim
  118: *>          INCX is INTEGER
  119: *>           On entry, INCX specifies the increment for the elements of
  120: *>           X. INCX must not be zero.
  121: *>
  122: *>  Level 2 Blas routine.
  123: *>
  124: *>  -- Written on 22-October-1986.
  125: *>     Jack Dongarra, Argonne National Lab.
  126: *>     Jeremy Du Croz, Nag Central Office.
  127: *>     Sven Hammarling, Nag Central Office.
  128: *>     Richard Hanson, Sandia National Labs.
  129: *> \endverbatim
  130: *
  131: *  Authors:
  132: *  ========
  133: *
  134: *> \author Univ. of Tennessee
  135: *> \author Univ. of California Berkeley
  136: *> \author Univ. of Colorado Denver
  137: *> \author NAG Ltd.
  138: *
  139: *> \ingroup double_blas_level1
  140: *
  141: *  =====================================================================
  142:       SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  143: *
  144: *  -- Reference BLAS level1 routine --
  145: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  146: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147: *
  148: *     .. Scalar Arguments ..
  149:       INTEGER INCX,LDA,N
  150:       CHARACTER DIAG,TRANS,UPLO
  151: *     ..
  152: *     .. Array Arguments ..
  153:       DOUBLE PRECISION A(LDA,*),X(*)
  154: *     ..
  155: *
  156: *  =====================================================================
  157: *
  158: *     .. Parameters ..
  159:       DOUBLE PRECISION ZERO
  160:       PARAMETER (ZERO=0.0D+0)
  161: *     ..
  162: *     .. Local Scalars ..
  163:       DOUBLE PRECISION TEMP
  164:       INTEGER I,INFO,IX,J,JX,KX
  165:       LOGICAL NOUNIT
  166: *     ..
  167: *     .. External Functions ..
  168:       LOGICAL LSAME
  169:       EXTERNAL LSAME
  170: *     ..
  171: *     .. External Subroutines ..
  172:       EXTERNAL XERBLA
  173: *     ..
  174: *     .. Intrinsic Functions ..
  175:       INTRINSIC MAX
  176: *     ..
  177: *
  178: *     Test the input parameters.
  179: *
  180:       INFO = 0
  181:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  182:           INFO = 1
  183:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  184:      +         .NOT.LSAME(TRANS,'C')) THEN
  185:           INFO = 2
  186:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  187:           INFO = 3
  188:       ELSE IF (N.LT.0) THEN
  189:           INFO = 4
  190:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  191:           INFO = 6
  192:       ELSE IF (INCX.EQ.0) THEN
  193:           INFO = 8
  194:       END IF
  195:       IF (INFO.NE.0) THEN
  196:           CALL XERBLA('DTRSV ',INFO)
  197:           RETURN
  198:       END IF
  199: *
  200: *     Quick return if possible.
  201: *
  202:       IF (N.EQ.0) RETURN
  203: *
  204:       NOUNIT = LSAME(DIAG,'N')
  205: *
  206: *     Set up the start point in X if the increment is not unity. This
  207: *     will be  ( N - 1 )*INCX  too small for descending loops.
  208: *
  209:       IF (INCX.LE.0) THEN
  210:           KX = 1 - (N-1)*INCX
  211:       ELSE IF (INCX.NE.1) THEN
  212:           KX = 1
  213:       END IF
  214: *
  215: *     Start the operations. In this version the elements of A are
  216: *     accessed sequentially with one pass through A.
  217: *
  218:       IF (LSAME(TRANS,'N')) THEN
  219: *
  220: *        Form  x := inv( A )*x.
  221: *
  222:           IF (LSAME(UPLO,'U')) THEN
  223:               IF (INCX.EQ.1) THEN
  224:                   DO 20 J = N,1,-1
  225:                       IF (X(J).NE.ZERO) THEN
  226:                           IF (NOUNIT) X(J) = X(J)/A(J,J)
  227:                           TEMP = X(J)
  228:                           DO 10 I = J - 1,1,-1
  229:                               X(I) = X(I) - TEMP*A(I,J)
  230:    10                     CONTINUE
  231:                       END IF
  232:    20             CONTINUE
  233:               ELSE
  234:                   JX = KX + (N-1)*INCX
  235:                   DO 40 J = N,1,-1
  236:                       IF (X(JX).NE.ZERO) THEN
  237:                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
  238:                           TEMP = X(JX)
  239:                           IX = JX
  240:                           DO 30 I = J - 1,1,-1
  241:                               IX = IX - INCX
  242:                               X(IX) = X(IX) - TEMP*A(I,J)
  243:    30                     CONTINUE
  244:                       END IF
  245:                       JX = JX - INCX
  246:    40             CONTINUE
  247:               END IF
  248:           ELSE
  249:               IF (INCX.EQ.1) THEN
  250:                   DO 60 J = 1,N
  251:                       IF (X(J).NE.ZERO) THEN
  252:                           IF (NOUNIT) X(J) = X(J)/A(J,J)
  253:                           TEMP = X(J)
  254:                           DO 50 I = J + 1,N
  255:                               X(I) = X(I) - TEMP*A(I,J)
  256:    50                     CONTINUE
  257:                       END IF
  258:    60             CONTINUE
  259:               ELSE
  260:                   JX = KX
  261:                   DO 80 J = 1,N
  262:                       IF (X(JX).NE.ZERO) THEN
  263:                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
  264:                           TEMP = X(JX)
  265:                           IX = JX
  266:                           DO 70 I = J + 1,N
  267:                               IX = IX + INCX
  268:                               X(IX) = X(IX) - TEMP*A(I,J)
  269:    70                     CONTINUE
  270:                       END IF
  271:                       JX = JX + INCX
  272:    80             CONTINUE
  273:               END IF
  274:           END IF
  275:       ELSE
  276: *
  277: *        Form  x := inv( A**T )*x.
  278: *
  279:           IF (LSAME(UPLO,'U')) THEN
  280:               IF (INCX.EQ.1) THEN
  281:                   DO 100 J = 1,N
  282:                       TEMP = X(J)
  283:                       DO 90 I = 1,J - 1
  284:                           TEMP = TEMP - A(I,J)*X(I)
  285:    90                 CONTINUE
  286:                       IF (NOUNIT) TEMP = TEMP/A(J,J)
  287:                       X(J) = TEMP
  288:   100             CONTINUE
  289:               ELSE
  290:                   JX = KX
  291:                   DO 120 J = 1,N
  292:                       TEMP = X(JX)
  293:                       IX = KX
  294:                       DO 110 I = 1,J - 1
  295:                           TEMP = TEMP - A(I,J)*X(IX)
  296:                           IX = IX + INCX
  297:   110                 CONTINUE
  298:                       IF (NOUNIT) TEMP = TEMP/A(J,J)
  299:                       X(JX) = TEMP
  300:                       JX = JX + INCX
  301:   120             CONTINUE
  302:               END IF
  303:           ELSE
  304:               IF (INCX.EQ.1) THEN
  305:                   DO 140 J = N,1,-1
  306:                       TEMP = X(J)
  307:                       DO 130 I = N,J + 1,-1
  308:                           TEMP = TEMP - A(I,J)*X(I)
  309:   130                 CONTINUE
  310:                       IF (NOUNIT) TEMP = TEMP/A(J,J)
  311:                       X(J) = TEMP
  312:   140             CONTINUE
  313:               ELSE
  314:                   KX = KX + (N-1)*INCX
  315:                   JX = KX
  316:                   DO 160 J = N,1,-1
  317:                       TEMP = X(JX)
  318:                       IX = KX
  319:                       DO 150 I = N,J + 1,-1
  320:                           TEMP = TEMP - A(I,J)*X(IX)
  321:                           IX = IX - INCX
  322:   150                 CONTINUE
  323:                       IF (NOUNIT) TEMP = TEMP/A(J,J)
  324:                       X(JX) = TEMP
  325:                       JX = JX - INCX
  326:   160             CONTINUE
  327:               END IF
  328:           END IF
  329:       END IF
  330: *
  331:       RETURN
  332: *
  333: *     End of DTRSV
  334: *
  335:       END

CVSweb interface <joel.bertrand@systella.fr>