File:  [local] / rpl / lapack / blas / dtrsv.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
    2: *     .. Scalar Arguments ..
    3:       INTEGER INCX,LDA,N
    4:       CHARACTER DIAG,TRANS,UPLO
    5: *     ..
    6: *     .. Array Arguments ..
    7:       DOUBLE PRECISION A(LDA,*),X(*)
    8: *     ..
    9: *
   10: *  Purpose
   11: *  =======
   12: *
   13: *  DTRSV  solves one of the systems of equations
   14: *
   15: *     A*x = b,   or   A'*x = b,
   16: *
   17: *  where b and x are n element vectors and A is an n by n unit, or
   18: *  non-unit, upper or lower triangular matrix.
   19: *
   20: *  No test for singularity or near-singularity is included in this
   21: *  routine. Such tests must be performed before calling this routine.
   22: *
   23: *  Arguments
   24: *  ==========
   25: *
   26: *  UPLO   - CHARACTER*1.
   27: *           On entry, UPLO specifies whether the matrix is an upper or
   28: *           lower triangular matrix as follows:
   29: *
   30: *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   31: *
   32: *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   33: *
   34: *           Unchanged on exit.
   35: *
   36: *  TRANS  - CHARACTER*1.
   37: *           On entry, TRANS specifies the equations to be solved as
   38: *           follows:
   39: *
   40: *              TRANS = 'N' or 'n'   A*x = b.
   41: *
   42: *              TRANS = 'T' or 't'   A'*x = b.
   43: *
   44: *              TRANS = 'C' or 'c'   A'*x = b.
   45: *
   46: *           Unchanged on exit.
   47: *
   48: *  DIAG   - CHARACTER*1.
   49: *           On entry, DIAG specifies whether or not A is unit
   50: *           triangular as follows:
   51: *
   52: *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   53: *
   54: *              DIAG = 'N' or 'n'   A is not assumed to be unit
   55: *                                  triangular.
   56: *
   57: *           Unchanged on exit.
   58: *
   59: *  N      - INTEGER.
   60: *           On entry, N specifies the order of the matrix A.
   61: *           N must be at least zero.
   62: *           Unchanged on exit.
   63: *
   64: *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
   65: *           Before entry with  UPLO = 'U' or 'u', the leading n by n
   66: *           upper triangular part of the array A must contain the upper
   67: *           triangular matrix and the strictly lower triangular part of
   68: *           A is not referenced.
   69: *           Before entry with UPLO = 'L' or 'l', the leading n by n
   70: *           lower triangular part of the array A must contain the lower
   71: *           triangular matrix and the strictly upper triangular part of
   72: *           A is not referenced.
   73: *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
   74: *           A are not referenced either, but are assumed to be unity.
   75: *           Unchanged on exit.
   76: *
   77: *  LDA    - INTEGER.
   78: *           On entry, LDA specifies the first dimension of A as declared
   79: *           in the calling (sub) program. LDA must be at least
   80: *           max( 1, n ).
   81: *           Unchanged on exit.
   82: *
   83: *  X      - DOUBLE PRECISION array of dimension at least
   84: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   85: *           Before entry, the incremented array X must contain the n
   86: *           element right-hand side vector b. On exit, X is overwritten
   87: *           with the solution vector x.
   88: *
   89: *  INCX   - INTEGER.
   90: *           On entry, INCX specifies the increment for the elements of
   91: *           X. INCX must not be zero.
   92: *           Unchanged on exit.
   93: *
   94: *
   95: *  Level 2 Blas routine.
   96: *
   97: *  -- Written on 22-October-1986.
   98: *     Jack Dongarra, Argonne National Lab.
   99: *     Jeremy Du Croz, Nag Central Office.
  100: *     Sven Hammarling, Nag Central Office.
  101: *     Richard Hanson, Sandia National Labs.
  102: *
  103: *  =====================================================================
  104: *
  105: *     .. Parameters ..
  106:       DOUBLE PRECISION ZERO
  107:       PARAMETER (ZERO=0.0D+0)
  108: *     ..
  109: *     .. Local Scalars ..
  110:       DOUBLE PRECISION TEMP
  111:       INTEGER I,INFO,IX,J,JX,KX
  112:       LOGICAL NOUNIT
  113: *     ..
  114: *     .. External Functions ..
  115:       LOGICAL LSAME
  116:       EXTERNAL LSAME
  117: *     ..
  118: *     .. External Subroutines ..
  119:       EXTERNAL XERBLA
  120: *     ..
  121: *     .. Intrinsic Functions ..
  122:       INTRINSIC MAX
  123: *     ..
  124: *
  125: *     Test the input parameters.
  126: *
  127:       INFO = 0
  128:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  129:           INFO = 1
  130:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  131:      +         .NOT.LSAME(TRANS,'C')) THEN
  132:           INFO = 2
  133:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  134:           INFO = 3
  135:       ELSE IF (N.LT.0) THEN
  136:           INFO = 4
  137:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  138:           INFO = 6
  139:       ELSE IF (INCX.EQ.0) THEN
  140:           INFO = 8
  141:       END IF
  142:       IF (INFO.NE.0) THEN
  143:           CALL XERBLA('DTRSV ',INFO)
  144:           RETURN
  145:       END IF
  146: *
  147: *     Quick return if possible.
  148: *
  149:       IF (N.EQ.0) RETURN
  150: *
  151:       NOUNIT = LSAME(DIAG,'N')
  152: *
  153: *     Set up the start point in X if the increment is not unity. This
  154: *     will be  ( N - 1 )*INCX  too small for descending loops.
  155: *
  156:       IF (INCX.LE.0) THEN
  157:           KX = 1 - (N-1)*INCX
  158:       ELSE IF (INCX.NE.1) THEN
  159:           KX = 1
  160:       END IF
  161: *
  162: *     Start the operations. In this version the elements of A are
  163: *     accessed sequentially with one pass through A.
  164: *
  165:       IF (LSAME(TRANS,'N')) THEN
  166: *
  167: *        Form  x := inv( A )*x.
  168: *
  169:           IF (LSAME(UPLO,'U')) THEN
  170:               IF (INCX.EQ.1) THEN
  171:                   DO 20 J = N,1,-1
  172:                       IF (X(J).NE.ZERO) THEN
  173:                           IF (NOUNIT) X(J) = X(J)/A(J,J)
  174:                           TEMP = X(J)
  175:                           DO 10 I = J - 1,1,-1
  176:                               X(I) = X(I) - TEMP*A(I,J)
  177:    10                     CONTINUE
  178:                       END IF
  179:    20             CONTINUE
  180:               ELSE
  181:                   JX = KX + (N-1)*INCX
  182:                   DO 40 J = N,1,-1
  183:                       IF (X(JX).NE.ZERO) THEN
  184:                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
  185:                           TEMP = X(JX)
  186:                           IX = JX
  187:                           DO 30 I = J - 1,1,-1
  188:                               IX = IX - INCX
  189:                               X(IX) = X(IX) - TEMP*A(I,J)
  190:    30                     CONTINUE
  191:                       END IF
  192:                       JX = JX - INCX
  193:    40             CONTINUE
  194:               END IF
  195:           ELSE
  196:               IF (INCX.EQ.1) THEN
  197:                   DO 60 J = 1,N
  198:                       IF (X(J).NE.ZERO) THEN
  199:                           IF (NOUNIT) X(J) = X(J)/A(J,J)
  200:                           TEMP = X(J)
  201:                           DO 50 I = J + 1,N
  202:                               X(I) = X(I) - TEMP*A(I,J)
  203:    50                     CONTINUE
  204:                       END IF
  205:    60             CONTINUE
  206:               ELSE
  207:                   JX = KX
  208:                   DO 80 J = 1,N
  209:                       IF (X(JX).NE.ZERO) THEN
  210:                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
  211:                           TEMP = X(JX)
  212:                           IX = JX
  213:                           DO 70 I = J + 1,N
  214:                               IX = IX + INCX
  215:                               X(IX) = X(IX) - TEMP*A(I,J)
  216:    70                     CONTINUE
  217:                       END IF
  218:                       JX = JX + INCX
  219:    80             CONTINUE
  220:               END IF
  221:           END IF
  222:       ELSE
  223: *
  224: *        Form  x := inv( A' )*x.
  225: *
  226:           IF (LSAME(UPLO,'U')) THEN
  227:               IF (INCX.EQ.1) THEN
  228:                   DO 100 J = 1,N
  229:                       TEMP = X(J)
  230:                       DO 90 I = 1,J - 1
  231:                           TEMP = TEMP - A(I,J)*X(I)
  232:    90                 CONTINUE
  233:                       IF (NOUNIT) TEMP = TEMP/A(J,J)
  234:                       X(J) = TEMP
  235:   100             CONTINUE
  236:               ELSE
  237:                   JX = KX
  238:                   DO 120 J = 1,N
  239:                       TEMP = X(JX)
  240:                       IX = KX
  241:                       DO 110 I = 1,J - 1
  242:                           TEMP = TEMP - A(I,J)*X(IX)
  243:                           IX = IX + INCX
  244:   110                 CONTINUE
  245:                       IF (NOUNIT) TEMP = TEMP/A(J,J)
  246:                       X(JX) = TEMP
  247:                       JX = JX + INCX
  248:   120             CONTINUE
  249:               END IF
  250:           ELSE
  251:               IF (INCX.EQ.1) THEN
  252:                   DO 140 J = N,1,-1
  253:                       TEMP = X(J)
  254:                       DO 130 I = N,J + 1,-1
  255:                           TEMP = TEMP - A(I,J)*X(I)
  256:   130                 CONTINUE
  257:                       IF (NOUNIT) TEMP = TEMP/A(J,J)
  258:                       X(J) = TEMP
  259:   140             CONTINUE
  260:               ELSE
  261:                   KX = KX + (N-1)*INCX
  262:                   JX = KX
  263:                   DO 160 J = N,1,-1
  264:                       TEMP = X(JX)
  265:                       IX = KX
  266:                       DO 150 I = N,J + 1,-1
  267:                           TEMP = TEMP - A(I,J)*X(IX)
  268:                           IX = IX - INCX
  269:   150                 CONTINUE
  270:                       IF (NOUNIT) TEMP = TEMP/A(J,J)
  271:                       X(JX) = TEMP
  272:                       JX = JX - INCX
  273:   160             CONTINUE
  274:               END IF
  275:           END IF
  276:       END IF
  277: *
  278:       RETURN
  279: *
  280: *     End of DTRSV .
  281: *
  282:       END

CVSweb interface <joel.bertrand@systella.fr>