File:  [local] / rpl / lapack / blas / dtrmv.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:44 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTRMV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
   12: *
   13: *       .. Scalar Arguments ..
   14: *       INTEGER INCX,LDA,N
   15: *       CHARACTER DIAG,TRANS,UPLO
   16: *       ..
   17: *       .. Array Arguments ..
   18: *       DOUBLE PRECISION A(LDA,*),X(*)
   19: *       ..
   20: *
   21: *
   22: *> \par Purpose:
   23: *  =============
   24: *>
   25: *> \verbatim
   26: *>
   27: *> DTRMV  performs one of the matrix-vector operations
   28: *>
   29: *>    x := A*x,   or   x := A**T*x,
   30: *>
   31: *> where x is an n element vector and  A is an n by n unit, or non-unit,
   32: *> upper or lower triangular matrix.
   33: *> \endverbatim
   34: *
   35: *  Arguments:
   36: *  ==========
   37: *
   38: *> \param[in] UPLO
   39: *> \verbatim
   40: *>          UPLO is CHARACTER*1
   41: *>           On entry, UPLO specifies whether the matrix is an upper or
   42: *>           lower triangular matrix as follows:
   43: *>
   44: *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   45: *>
   46: *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   47: *> \endverbatim
   48: *>
   49: *> \param[in] TRANS
   50: *> \verbatim
   51: *>          TRANS is CHARACTER*1
   52: *>           On entry, TRANS specifies the operation to be performed as
   53: *>           follows:
   54: *>
   55: *>              TRANS = 'N' or 'n'   x := A*x.
   56: *>
   57: *>              TRANS = 'T' or 't'   x := A**T*x.
   58: *>
   59: *>              TRANS = 'C' or 'c'   x := A**T*x.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] DIAG
   63: *> \verbatim
   64: *>          DIAG is CHARACTER*1
   65: *>           On entry, DIAG specifies whether or not A is unit
   66: *>           triangular as follows:
   67: *>
   68: *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   69: *>
   70: *>              DIAG = 'N' or 'n'   A is not assumed to be unit
   71: *>                                  triangular.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>           On entry, N specifies the order of the matrix A.
   78: *>           N must be at least zero.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] A
   82: *> \verbatim
   83: *>          A is DOUBLE PRECISION array, dimension ( LDA, N )
   84: *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
   85: *>           upper triangular part of the array A must contain the upper
   86: *>           triangular matrix and the strictly lower triangular part of
   87: *>           A is not referenced.
   88: *>           Before entry with UPLO = 'L' or 'l', the leading n by n
   89: *>           lower triangular part of the array A must contain the lower
   90: *>           triangular matrix and the strictly upper triangular part of
   91: *>           A is not referenced.
   92: *>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
   93: *>           A are not referenced either, but are assumed to be unity.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDA
   97: *> \verbatim
   98: *>          LDA is INTEGER
   99: *>           On entry, LDA specifies the first dimension of A as declared
  100: *>           in the calling (sub) program. LDA must be at least
  101: *>           max( 1, n ).
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] X
  105: *> \verbatim
  106: *>          X is DOUBLE PRECISION array, dimension at least
  107: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
  108: *>           Before entry, the incremented array X must contain the n
  109: *>           element vector x. On exit, X is overwritten with the
  110: *>           transformed vector x.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] INCX
  114: *> \verbatim
  115: *>          INCX is INTEGER
  116: *>           On entry, INCX specifies the increment for the elements of
  117: *>           X. INCX must not be zero.
  118: *> \endverbatim
  119: *
  120: *  Authors:
  121: *  ========
  122: *
  123: *> \author Univ. of Tennessee
  124: *> \author Univ. of California Berkeley
  125: *> \author Univ. of Colorado Denver
  126: *> \author NAG Ltd.
  127: *
  128: *> \ingroup double_blas_level2
  129: *
  130: *> \par Further Details:
  131: *  =====================
  132: *>
  133: *> \verbatim
  134: *>
  135: *>  Level 2 Blas routine.
  136: *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
  137: *>
  138: *>  -- Written on 22-October-1986.
  139: *>     Jack Dongarra, Argonne National Lab.
  140: *>     Jeremy Du Croz, Nag Central Office.
  141: *>     Sven Hammarling, Nag Central Office.
  142: *>     Richard Hanson, Sandia National Labs.
  143: *> \endverbatim
  144: *>
  145: *  =====================================================================
  146:       SUBROUTINE DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  147: *
  148: *  -- Reference BLAS level2 routine --
  149: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  150: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  151: *
  152: *     .. Scalar Arguments ..
  153:       INTEGER INCX,LDA,N
  154:       CHARACTER DIAG,TRANS,UPLO
  155: *     ..
  156: *     .. Array Arguments ..
  157:       DOUBLE PRECISION A(LDA,*),X(*)
  158: *     ..
  159: *
  160: *  =====================================================================
  161: *
  162: *     .. Parameters ..
  163:       DOUBLE PRECISION ZERO
  164:       PARAMETER (ZERO=0.0D+0)
  165: *     ..
  166: *     .. Local Scalars ..
  167:       DOUBLE PRECISION TEMP
  168:       INTEGER I,INFO,IX,J,JX,KX
  169:       LOGICAL NOUNIT
  170: *     ..
  171: *     .. External Functions ..
  172:       LOGICAL LSAME
  173:       EXTERNAL LSAME
  174: *     ..
  175: *     .. External Subroutines ..
  176:       EXTERNAL XERBLA
  177: *     ..
  178: *     .. Intrinsic Functions ..
  179:       INTRINSIC MAX
  180: *     ..
  181: *
  182: *     Test the input parameters.
  183: *
  184:       INFO = 0
  185:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  186:           INFO = 1
  187:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  188:      +         .NOT.LSAME(TRANS,'C')) THEN
  189:           INFO = 2
  190:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  191:           INFO = 3
  192:       ELSE IF (N.LT.0) THEN
  193:           INFO = 4
  194:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  195:           INFO = 6
  196:       ELSE IF (INCX.EQ.0) THEN
  197:           INFO = 8
  198:       END IF
  199:       IF (INFO.NE.0) THEN
  200:           CALL XERBLA('DTRMV ',INFO)
  201:           RETURN
  202:       END IF
  203: *
  204: *     Quick return if possible.
  205: *
  206:       IF (N.EQ.0) RETURN
  207: *
  208:       NOUNIT = LSAME(DIAG,'N')
  209: *
  210: *     Set up the start point in X if the increment is not unity. This
  211: *     will be  ( N - 1 )*INCX  too small for descending loops.
  212: *
  213:       IF (INCX.LE.0) THEN
  214:           KX = 1 - (N-1)*INCX
  215:       ELSE IF (INCX.NE.1) THEN
  216:           KX = 1
  217:       END IF
  218: *
  219: *     Start the operations. In this version the elements of A are
  220: *     accessed sequentially with one pass through A.
  221: *
  222:       IF (LSAME(TRANS,'N')) THEN
  223: *
  224: *        Form  x := A*x.
  225: *
  226:           IF (LSAME(UPLO,'U')) THEN
  227:               IF (INCX.EQ.1) THEN
  228:                   DO 20 J = 1,N
  229:                       IF (X(J).NE.ZERO) THEN
  230:                           TEMP = X(J)
  231:                           DO 10 I = 1,J - 1
  232:                               X(I) = X(I) + TEMP*A(I,J)
  233:    10                     CONTINUE
  234:                           IF (NOUNIT) X(J) = X(J)*A(J,J)
  235:                       END IF
  236:    20             CONTINUE
  237:               ELSE
  238:                   JX = KX
  239:                   DO 40 J = 1,N
  240:                       IF (X(JX).NE.ZERO) THEN
  241:                           TEMP = X(JX)
  242:                           IX = KX
  243:                           DO 30 I = 1,J - 1
  244:                               X(IX) = X(IX) + TEMP*A(I,J)
  245:                               IX = IX + INCX
  246:    30                     CONTINUE
  247:                           IF (NOUNIT) X(JX) = X(JX)*A(J,J)
  248:                       END IF
  249:                       JX = JX + INCX
  250:    40             CONTINUE
  251:               END IF
  252:           ELSE
  253:               IF (INCX.EQ.1) THEN
  254:                   DO 60 J = N,1,-1
  255:                       IF (X(J).NE.ZERO) THEN
  256:                           TEMP = X(J)
  257:                           DO 50 I = N,J + 1,-1
  258:                               X(I) = X(I) + TEMP*A(I,J)
  259:    50                     CONTINUE
  260:                           IF (NOUNIT) X(J) = X(J)*A(J,J)
  261:                       END IF
  262:    60             CONTINUE
  263:               ELSE
  264:                   KX = KX + (N-1)*INCX
  265:                   JX = KX
  266:                   DO 80 J = N,1,-1
  267:                       IF (X(JX).NE.ZERO) THEN
  268:                           TEMP = X(JX)
  269:                           IX = KX
  270:                           DO 70 I = N,J + 1,-1
  271:                               X(IX) = X(IX) + TEMP*A(I,J)
  272:                               IX = IX - INCX
  273:    70                     CONTINUE
  274:                           IF (NOUNIT) X(JX) = X(JX)*A(J,J)
  275:                       END IF
  276:                       JX = JX - INCX
  277:    80             CONTINUE
  278:               END IF
  279:           END IF
  280:       ELSE
  281: *
  282: *        Form  x := A**T*x.
  283: *
  284:           IF (LSAME(UPLO,'U')) THEN
  285:               IF (INCX.EQ.1) THEN
  286:                   DO 100 J = N,1,-1
  287:                       TEMP = X(J)
  288:                       IF (NOUNIT) TEMP = TEMP*A(J,J)
  289:                       DO 90 I = J - 1,1,-1
  290:                           TEMP = TEMP + A(I,J)*X(I)
  291:    90                 CONTINUE
  292:                       X(J) = TEMP
  293:   100             CONTINUE
  294:               ELSE
  295:                   JX = KX + (N-1)*INCX
  296:                   DO 120 J = N,1,-1
  297:                       TEMP = X(JX)
  298:                       IX = JX
  299:                       IF (NOUNIT) TEMP = TEMP*A(J,J)
  300:                       DO 110 I = J - 1,1,-1
  301:                           IX = IX - INCX
  302:                           TEMP = TEMP + A(I,J)*X(IX)
  303:   110                 CONTINUE
  304:                       X(JX) = TEMP
  305:                       JX = JX - INCX
  306:   120             CONTINUE
  307:               END IF
  308:           ELSE
  309:               IF (INCX.EQ.1) THEN
  310:                   DO 140 J = 1,N
  311:                       TEMP = X(J)
  312:                       IF (NOUNIT) TEMP = TEMP*A(J,J)
  313:                       DO 130 I = J + 1,N
  314:                           TEMP = TEMP + A(I,J)*X(I)
  315:   130                 CONTINUE
  316:                       X(J) = TEMP
  317:   140             CONTINUE
  318:               ELSE
  319:                   JX = KX
  320:                   DO 160 J = 1,N
  321:                       TEMP = X(JX)
  322:                       IX = JX
  323:                       IF (NOUNIT) TEMP = TEMP*A(J,J)
  324:                       DO 150 I = J + 1,N
  325:                           IX = IX + INCX
  326:                           TEMP = TEMP + A(I,J)*X(IX)
  327:   150                 CONTINUE
  328:                       X(JX) = TEMP
  329:                       JX = JX + INCX
  330:   160             CONTINUE
  331:               END IF
  332:           END IF
  333:       END IF
  334: *
  335:       RETURN
  336: *
  337: *     End of DTRMV
  338: *
  339:       END

CVSweb interface <joel.bertrand@systella.fr>