File:  [local] / rpl / lapack / blas / dtpsv.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:51:25 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0

    1:       SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
    2: *     .. Scalar Arguments ..
    3:       INTEGER INCX,N
    4:       CHARACTER DIAG,TRANS,UPLO
    5: *     ..
    6: *     .. Array Arguments ..
    7:       DOUBLE PRECISION AP(*),X(*)
    8: *     ..
    9: *
   10: *  Purpose
   11: *  =======
   12: *
   13: *  DTPSV  solves one of the systems of equations
   14: *
   15: *     A*x = b,   or   A'*x = b,
   16: *
   17: *  where b and x are n element vectors and A is an n by n unit, or
   18: *  non-unit, upper or lower triangular matrix, supplied in packed form.
   19: *
   20: *  No test for singularity or near-singularity is included in this
   21: *  routine. Such tests must be performed before calling this routine.
   22: *
   23: *  Arguments
   24: *  ==========
   25: *
   26: *  UPLO   - CHARACTER*1.
   27: *           On entry, UPLO specifies whether the matrix is an upper or
   28: *           lower triangular matrix as follows:
   29: *
   30: *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   31: *
   32: *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   33: *
   34: *           Unchanged on exit.
   35: *
   36: *  TRANS  - CHARACTER*1.
   37: *           On entry, TRANS specifies the equations to be solved as
   38: *           follows:
   39: *
   40: *              TRANS = 'N' or 'n'   A*x = b.
   41: *
   42: *              TRANS = 'T' or 't'   A'*x = b.
   43: *
   44: *              TRANS = 'C' or 'c'   A'*x = b.
   45: *
   46: *           Unchanged on exit.
   47: *
   48: *  DIAG   - CHARACTER*1.
   49: *           On entry, DIAG specifies whether or not A is unit
   50: *           triangular as follows:
   51: *
   52: *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   53: *
   54: *              DIAG = 'N' or 'n'   A is not assumed to be unit
   55: *                                  triangular.
   56: *
   57: *           Unchanged on exit.
   58: *
   59: *  N      - INTEGER.
   60: *           On entry, N specifies the order of the matrix A.
   61: *           N must be at least zero.
   62: *           Unchanged on exit.
   63: *
   64: *  AP     - DOUBLE PRECISION array of DIMENSION at least
   65: *           ( ( n*( n + 1 ) )/2 ).
   66: *           Before entry with  UPLO = 'U' or 'u', the array AP must
   67: *           contain the upper triangular matrix packed sequentially,
   68: *           column by column, so that AP( 1 ) contains a( 1, 1 ),
   69: *           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
   70: *           respectively, and so on.
   71: *           Before entry with UPLO = 'L' or 'l', the array AP must
   72: *           contain the lower triangular matrix packed sequentially,
   73: *           column by column, so that AP( 1 ) contains a( 1, 1 ),
   74: *           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
   75: *           respectively, and so on.
   76: *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
   77: *           A are not referenced, but are assumed to be unity.
   78: *           Unchanged on exit.
   79: *
   80: *  X      - DOUBLE PRECISION array of dimension at least
   81: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   82: *           Before entry, the incremented array X must contain the n
   83: *           element right-hand side vector b. On exit, X is overwritten
   84: *           with the solution vector x.
   85: *
   86: *  INCX   - INTEGER.
   87: *           On entry, INCX specifies the increment for the elements of
   88: *           X. INCX must not be zero.
   89: *           Unchanged on exit.
   90: *
   91: *  Further Details
   92: *  ===============
   93: *
   94: *  Level 2 Blas routine.
   95: *
   96: *  -- Written on 22-October-1986.
   97: *     Jack Dongarra, Argonne National Lab.
   98: *     Jeremy Du Croz, Nag Central Office.
   99: *     Sven Hammarling, Nag Central Office.
  100: *     Richard Hanson, Sandia National Labs.
  101: *
  102: *  =====================================================================
  103: *
  104: *     .. Parameters ..
  105:       DOUBLE PRECISION ZERO
  106:       PARAMETER (ZERO=0.0D+0)
  107: *     ..
  108: *     .. Local Scalars ..
  109:       DOUBLE PRECISION TEMP
  110:       INTEGER I,INFO,IX,J,JX,K,KK,KX
  111:       LOGICAL NOUNIT
  112: *     ..
  113: *     .. External Functions ..
  114:       LOGICAL LSAME
  115:       EXTERNAL LSAME
  116: *     ..
  117: *     .. External Subroutines ..
  118:       EXTERNAL XERBLA
  119: *     ..
  120: *
  121: *     Test the input parameters.
  122: *
  123:       INFO = 0
  124:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  125:           INFO = 1
  126:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  127:      +         .NOT.LSAME(TRANS,'C')) THEN
  128:           INFO = 2
  129:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  130:           INFO = 3
  131:       ELSE IF (N.LT.0) THEN
  132:           INFO = 4
  133:       ELSE IF (INCX.EQ.0) THEN
  134:           INFO = 7
  135:       END IF
  136:       IF (INFO.NE.0) THEN
  137:           CALL XERBLA('DTPSV ',INFO)
  138:           RETURN
  139:       END IF
  140: *
  141: *     Quick return if possible.
  142: *
  143:       IF (N.EQ.0) RETURN
  144: *
  145:       NOUNIT = LSAME(DIAG,'N')
  146: *
  147: *     Set up the start point in X if the increment is not unity. This
  148: *     will be  ( N - 1 )*INCX  too small for descending loops.
  149: *
  150:       IF (INCX.LE.0) THEN
  151:           KX = 1 - (N-1)*INCX
  152:       ELSE IF (INCX.NE.1) THEN
  153:           KX = 1
  154:       END IF
  155: *
  156: *     Start the operations. In this version the elements of AP are
  157: *     accessed sequentially with one pass through AP.
  158: *
  159:       IF (LSAME(TRANS,'N')) THEN
  160: *
  161: *        Form  x := inv( A )*x.
  162: *
  163:           IF (LSAME(UPLO,'U')) THEN
  164:               KK = (N* (N+1))/2
  165:               IF (INCX.EQ.1) THEN
  166:                   DO 20 J = N,1,-1
  167:                       IF (X(J).NE.ZERO) THEN
  168:                           IF (NOUNIT) X(J) = X(J)/AP(KK)
  169:                           TEMP = X(J)
  170:                           K = KK - 1
  171:                           DO 10 I = J - 1,1,-1
  172:                               X(I) = X(I) - TEMP*AP(K)
  173:                               K = K - 1
  174:    10                     CONTINUE
  175:                       END IF
  176:                       KK = KK - J
  177:    20             CONTINUE
  178:               ELSE
  179:                   JX = KX + (N-1)*INCX
  180:                   DO 40 J = N,1,-1
  181:                       IF (X(JX).NE.ZERO) THEN
  182:                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
  183:                           TEMP = X(JX)
  184:                           IX = JX
  185:                           DO 30 K = KK - 1,KK - J + 1,-1
  186:                               IX = IX - INCX
  187:                               X(IX) = X(IX) - TEMP*AP(K)
  188:    30                     CONTINUE
  189:                       END IF
  190:                       JX = JX - INCX
  191:                       KK = KK - J
  192:    40             CONTINUE
  193:               END IF
  194:           ELSE
  195:               KK = 1
  196:               IF (INCX.EQ.1) THEN
  197:                   DO 60 J = 1,N
  198:                       IF (X(J).NE.ZERO) THEN
  199:                           IF (NOUNIT) X(J) = X(J)/AP(KK)
  200:                           TEMP = X(J)
  201:                           K = KK + 1
  202:                           DO 50 I = J + 1,N
  203:                               X(I) = X(I) - TEMP*AP(K)
  204:                               K = K + 1
  205:    50                     CONTINUE
  206:                       END IF
  207:                       KK = KK + (N-J+1)
  208:    60             CONTINUE
  209:               ELSE
  210:                   JX = KX
  211:                   DO 80 J = 1,N
  212:                       IF (X(JX).NE.ZERO) THEN
  213:                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
  214:                           TEMP = X(JX)
  215:                           IX = JX
  216:                           DO 70 K = KK + 1,KK + N - J
  217:                               IX = IX + INCX
  218:                               X(IX) = X(IX) - TEMP*AP(K)
  219:    70                     CONTINUE
  220:                       END IF
  221:                       JX = JX + INCX
  222:                       KK = KK + (N-J+1)
  223:    80             CONTINUE
  224:               END IF
  225:           END IF
  226:       ELSE
  227: *
  228: *        Form  x := inv( A' )*x.
  229: *
  230:           IF (LSAME(UPLO,'U')) THEN
  231:               KK = 1
  232:               IF (INCX.EQ.1) THEN
  233:                   DO 100 J = 1,N
  234:                       TEMP = X(J)
  235:                       K = KK
  236:                       DO 90 I = 1,J - 1
  237:                           TEMP = TEMP - AP(K)*X(I)
  238:                           K = K + 1
  239:    90                 CONTINUE
  240:                       IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
  241:                       X(J) = TEMP
  242:                       KK = KK + J
  243:   100             CONTINUE
  244:               ELSE
  245:                   JX = KX
  246:                   DO 120 J = 1,N
  247:                       TEMP = X(JX)
  248:                       IX = KX
  249:                       DO 110 K = KK,KK + J - 2
  250:                           TEMP = TEMP - AP(K)*X(IX)
  251:                           IX = IX + INCX
  252:   110                 CONTINUE
  253:                       IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
  254:                       X(JX) = TEMP
  255:                       JX = JX + INCX
  256:                       KK = KK + J
  257:   120             CONTINUE
  258:               END IF
  259:           ELSE
  260:               KK = (N* (N+1))/2
  261:               IF (INCX.EQ.1) THEN
  262:                   DO 140 J = N,1,-1
  263:                       TEMP = X(J)
  264:                       K = KK
  265:                       DO 130 I = N,J + 1,-1
  266:                           TEMP = TEMP - AP(K)*X(I)
  267:                           K = K - 1
  268:   130                 CONTINUE
  269:                       IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
  270:                       X(J) = TEMP
  271:                       KK = KK - (N-J+1)
  272:   140             CONTINUE
  273:               ELSE
  274:                   KX = KX + (N-1)*INCX
  275:                   JX = KX
  276:                   DO 160 J = N,1,-1
  277:                       TEMP = X(JX)
  278:                       IX = KX
  279:                       DO 150 K = KK,KK - (N- (J+1)),-1
  280:                           TEMP = TEMP - AP(K)*X(IX)
  281:                           IX = IX - INCX
  282:   150                 CONTINUE
  283:                       IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
  284:                       X(JX) = TEMP
  285:                       JX = JX - INCX
  286:                       KK = KK - (N-J+1)
  287:   160             CONTINUE
  288:               END IF
  289:           END IF
  290:       END IF
  291: *
  292:       RETURN
  293: *
  294: *     End of DTPSV .
  295: *
  296:       END

CVSweb interface <joel.bertrand@systella.fr>