File:  [local] / rpl / lapack / blas / dtpsv.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:44 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTPSV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
   12: *
   13: *       .. Scalar Arguments ..
   14: *       INTEGER INCX,N
   15: *       CHARACTER DIAG,TRANS,UPLO
   16: *       ..
   17: *       .. Array Arguments ..
   18: *       DOUBLE PRECISION AP(*),X(*)
   19: *       ..
   20: *
   21: *
   22: *> \par Purpose:
   23: *  =============
   24: *>
   25: *> \verbatim
   26: *>
   27: *> DTPSV  solves one of the systems of equations
   28: *>
   29: *>    A*x = b,   or   A**T*x = b,
   30: *>
   31: *> where b and x are n element vectors and A is an n by n unit, or
   32: *> non-unit, upper or lower triangular matrix, supplied in packed form.
   33: *>
   34: *> No test for singularity or near-singularity is included in this
   35: *> routine. Such tests must be performed before calling this routine.
   36: *> \endverbatim
   37: *
   38: *  Arguments:
   39: *  ==========
   40: *
   41: *> \param[in] UPLO
   42: *> \verbatim
   43: *>          UPLO is CHARACTER*1
   44: *>           On entry, UPLO specifies whether the matrix is an upper or
   45: *>           lower triangular matrix as follows:
   46: *>
   47: *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   48: *>
   49: *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] TRANS
   53: *> \verbatim
   54: *>          TRANS is CHARACTER*1
   55: *>           On entry, TRANS specifies the equations to be solved as
   56: *>           follows:
   57: *>
   58: *>              TRANS = 'N' or 'n'   A*x = b.
   59: *>
   60: *>              TRANS = 'T' or 't'   A**T*x = b.
   61: *>
   62: *>              TRANS = 'C' or 'c'   A**T*x = b.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] DIAG
   66: *> \verbatim
   67: *>          DIAG is CHARACTER*1
   68: *>           On entry, DIAG specifies whether or not A is unit
   69: *>           triangular as follows:
   70: *>
   71: *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   72: *>
   73: *>              DIAG = 'N' or 'n'   A is not assumed to be unit
   74: *>                                  triangular.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] N
   78: *> \verbatim
   79: *>          N is INTEGER
   80: *>           On entry, N specifies the order of the matrix A.
   81: *>           N must be at least zero.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] AP
   85: *> \verbatim
   86: *>          AP is DOUBLE PRECISION array, dimension at least
   87: *>           ( ( n*( n + 1 ) )/2 ).
   88: *>           Before entry with  UPLO = 'U' or 'u', the array AP must
   89: *>           contain the upper triangular matrix packed sequentially,
   90: *>           column by column, so that AP( 1 ) contains a( 1, 1 ),
   91: *>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
   92: *>           respectively, and so on.
   93: *>           Before entry with UPLO = 'L' or 'l', the array AP must
   94: *>           contain the lower triangular matrix packed sequentially,
   95: *>           column by column, so that AP( 1 ) contains a( 1, 1 ),
   96: *>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
   97: *>           respectively, and so on.
   98: *>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
   99: *>           A are not referenced, but are assumed to be unity.
  100: *> \endverbatim
  101: *>
  102: *> \param[in,out] X
  103: *> \verbatim
  104: *>          X is DOUBLE PRECISION array, dimension at least
  105: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
  106: *>           Before entry, the incremented array X must contain the n
  107: *>           element right-hand side vector b. On exit, X is overwritten
  108: *>           with the solution vector x.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] INCX
  112: *> \verbatim
  113: *>          INCX is INTEGER
  114: *>           On entry, INCX specifies the increment for the elements of
  115: *>           X. INCX must not be zero.
  116: *> \endverbatim
  117: *
  118: *  Authors:
  119: *  ========
  120: *
  121: *> \author Univ. of Tennessee
  122: *> \author Univ. of California Berkeley
  123: *> \author Univ. of Colorado Denver
  124: *> \author NAG Ltd.
  125: *
  126: *> \ingroup double_blas_level2
  127: *
  128: *> \par Further Details:
  129: *  =====================
  130: *>
  131: *> \verbatim
  132: *>
  133: *>  Level 2 Blas routine.
  134: *>
  135: *>  -- Written on 22-October-1986.
  136: *>     Jack Dongarra, Argonne National Lab.
  137: *>     Jeremy Du Croz, Nag Central Office.
  138: *>     Sven Hammarling, Nag Central Office.
  139: *>     Richard Hanson, Sandia National Labs.
  140: *> \endverbatim
  141: *>
  142: *  =====================================================================
  143:       SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
  144: *
  145: *  -- Reference BLAS level2 routine --
  146: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  147: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148: *
  149: *     .. Scalar Arguments ..
  150:       INTEGER INCX,N
  151:       CHARACTER DIAG,TRANS,UPLO
  152: *     ..
  153: *     .. Array Arguments ..
  154:       DOUBLE PRECISION AP(*),X(*)
  155: *     ..
  156: *
  157: *  =====================================================================
  158: *
  159: *     .. Parameters ..
  160:       DOUBLE PRECISION ZERO
  161:       PARAMETER (ZERO=0.0D+0)
  162: *     ..
  163: *     .. Local Scalars ..
  164:       DOUBLE PRECISION TEMP
  165:       INTEGER I,INFO,IX,J,JX,K,KK,KX
  166:       LOGICAL NOUNIT
  167: *     ..
  168: *     .. External Functions ..
  169:       LOGICAL LSAME
  170:       EXTERNAL LSAME
  171: *     ..
  172: *     .. External Subroutines ..
  173:       EXTERNAL XERBLA
  174: *     ..
  175: *
  176: *     Test the input parameters.
  177: *
  178:       INFO = 0
  179:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  180:           INFO = 1
  181:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  182:      +         .NOT.LSAME(TRANS,'C')) THEN
  183:           INFO = 2
  184:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  185:           INFO = 3
  186:       ELSE IF (N.LT.0) THEN
  187:           INFO = 4
  188:       ELSE IF (INCX.EQ.0) THEN
  189:           INFO = 7
  190:       END IF
  191:       IF (INFO.NE.0) THEN
  192:           CALL XERBLA('DTPSV ',INFO)
  193:           RETURN
  194:       END IF
  195: *
  196: *     Quick return if possible.
  197: *
  198:       IF (N.EQ.0) RETURN
  199: *
  200:       NOUNIT = LSAME(DIAG,'N')
  201: *
  202: *     Set up the start point in X if the increment is not unity. This
  203: *     will be  ( N - 1 )*INCX  too small for descending loops.
  204: *
  205:       IF (INCX.LE.0) THEN
  206:           KX = 1 - (N-1)*INCX
  207:       ELSE IF (INCX.NE.1) THEN
  208:           KX = 1
  209:       END IF
  210: *
  211: *     Start the operations. In this version the elements of AP are
  212: *     accessed sequentially with one pass through AP.
  213: *
  214:       IF (LSAME(TRANS,'N')) THEN
  215: *
  216: *        Form  x := inv( A )*x.
  217: *
  218:           IF (LSAME(UPLO,'U')) THEN
  219:               KK = (N* (N+1))/2
  220:               IF (INCX.EQ.1) THEN
  221:                   DO 20 J = N,1,-1
  222:                       IF (X(J).NE.ZERO) THEN
  223:                           IF (NOUNIT) X(J) = X(J)/AP(KK)
  224:                           TEMP = X(J)
  225:                           K = KK - 1
  226:                           DO 10 I = J - 1,1,-1
  227:                               X(I) = X(I) - TEMP*AP(K)
  228:                               K = K - 1
  229:    10                     CONTINUE
  230:                       END IF
  231:                       KK = KK - J
  232:    20             CONTINUE
  233:               ELSE
  234:                   JX = KX + (N-1)*INCX
  235:                   DO 40 J = N,1,-1
  236:                       IF (X(JX).NE.ZERO) THEN
  237:                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
  238:                           TEMP = X(JX)
  239:                           IX = JX
  240:                           DO 30 K = KK - 1,KK - J + 1,-1
  241:                               IX = IX - INCX
  242:                               X(IX) = X(IX) - TEMP*AP(K)
  243:    30                     CONTINUE
  244:                       END IF
  245:                       JX = JX - INCX
  246:                       KK = KK - J
  247:    40             CONTINUE
  248:               END IF
  249:           ELSE
  250:               KK = 1
  251:               IF (INCX.EQ.1) THEN
  252:                   DO 60 J = 1,N
  253:                       IF (X(J).NE.ZERO) THEN
  254:                           IF (NOUNIT) X(J) = X(J)/AP(KK)
  255:                           TEMP = X(J)
  256:                           K = KK + 1
  257:                           DO 50 I = J + 1,N
  258:                               X(I) = X(I) - TEMP*AP(K)
  259:                               K = K + 1
  260:    50                     CONTINUE
  261:                       END IF
  262:                       KK = KK + (N-J+1)
  263:    60             CONTINUE
  264:               ELSE
  265:                   JX = KX
  266:                   DO 80 J = 1,N
  267:                       IF (X(JX).NE.ZERO) THEN
  268:                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
  269:                           TEMP = X(JX)
  270:                           IX = JX
  271:                           DO 70 K = KK + 1,KK + N - J
  272:                               IX = IX + INCX
  273:                               X(IX) = X(IX) - TEMP*AP(K)
  274:    70                     CONTINUE
  275:                       END IF
  276:                       JX = JX + INCX
  277:                       KK = KK + (N-J+1)
  278:    80             CONTINUE
  279:               END IF
  280:           END IF
  281:       ELSE
  282: *
  283: *        Form  x := inv( A**T )*x.
  284: *
  285:           IF (LSAME(UPLO,'U')) THEN
  286:               KK = 1
  287:               IF (INCX.EQ.1) THEN
  288:                   DO 100 J = 1,N
  289:                       TEMP = X(J)
  290:                       K = KK
  291:                       DO 90 I = 1,J - 1
  292:                           TEMP = TEMP - AP(K)*X(I)
  293:                           K = K + 1
  294:    90                 CONTINUE
  295:                       IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
  296:                       X(J) = TEMP
  297:                       KK = KK + J
  298:   100             CONTINUE
  299:               ELSE
  300:                   JX = KX
  301:                   DO 120 J = 1,N
  302:                       TEMP = X(JX)
  303:                       IX = KX
  304:                       DO 110 K = KK,KK + J - 2
  305:                           TEMP = TEMP - AP(K)*X(IX)
  306:                           IX = IX + INCX
  307:   110                 CONTINUE
  308:                       IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
  309:                       X(JX) = TEMP
  310:                       JX = JX + INCX
  311:                       KK = KK + J
  312:   120             CONTINUE
  313:               END IF
  314:           ELSE
  315:               KK = (N* (N+1))/2
  316:               IF (INCX.EQ.1) THEN
  317:                   DO 140 J = N,1,-1
  318:                       TEMP = X(J)
  319:                       K = KK
  320:                       DO 130 I = N,J + 1,-1
  321:                           TEMP = TEMP - AP(K)*X(I)
  322:                           K = K - 1
  323:   130                 CONTINUE
  324:                       IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
  325:                       X(J) = TEMP
  326:                       KK = KK - (N-J+1)
  327:   140             CONTINUE
  328:               ELSE
  329:                   KX = KX + (N-1)*INCX
  330:                   JX = KX
  331:                   DO 160 J = N,1,-1
  332:                       TEMP = X(JX)
  333:                       IX = KX
  334:                       DO 150 K = KK,KK - (N- (J+1)),-1
  335:                           TEMP = TEMP - AP(K)*X(IX)
  336:                           IX = IX - INCX
  337:   150                 CONTINUE
  338:                       IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
  339:                       X(JX) = TEMP
  340:                       JX = JX - INCX
  341:                       KK = KK - (N-J+1)
  342:   160             CONTINUE
  343:               END IF
  344:           END IF
  345:       END IF
  346: *
  347:       RETURN
  348: *
  349: *     End of DTPSV
  350: *
  351:       END

CVSweb interface <joel.bertrand@systella.fr>