File:  [local] / rpl / lapack / blas / dtpsv.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:03 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de blas.

    1: *> \brief \b DTPSV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
   12:    13: *       .. Scalar Arguments ..
   14: *       INTEGER INCX,N
   15: *       CHARACTER DIAG,TRANS,UPLO
   16: *       ..
   17: *       .. Array Arguments ..
   18: *       DOUBLE PRECISION AP(*),X(*)
   19: *       ..
   20: *  
   21: *
   22: *> \par Purpose:
   23: *  =============
   24: *>
   25: *> \verbatim
   26: *>
   27: *> DTPSV  solves one of the systems of equations
   28: *>
   29: *>    A*x = b,   or   A**T*x = b,
   30: *>
   31: *> where b and x are n element vectors and A is an n by n unit, or
   32: *> non-unit, upper or lower triangular matrix, supplied in packed form.
   33: *>
   34: *> No test for singularity or near-singularity is included in this
   35: *> routine. Such tests must be performed before calling this routine.
   36: *> \endverbatim
   37: *
   38: *  Arguments:
   39: *  ==========
   40: *
   41: *> \param[in] UPLO
   42: *> \verbatim
   43: *>          UPLO is CHARACTER*1
   44: *>           On entry, UPLO specifies whether the matrix is an upper or
   45: *>           lower triangular matrix as follows:
   46: *>
   47: *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   48: *>
   49: *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] TRANS
   53: *> \verbatim
   54: *>          TRANS is CHARACTER*1
   55: *>           On entry, TRANS specifies the equations to be solved as
   56: *>           follows:
   57: *>
   58: *>              TRANS = 'N' or 'n'   A*x = b.
   59: *>
   60: *>              TRANS = 'T' or 't'   A**T*x = b.
   61: *>
   62: *>              TRANS = 'C' or 'c'   A**T*x = b.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] DIAG
   66: *> \verbatim
   67: *>          DIAG is CHARACTER*1
   68: *>           On entry, DIAG specifies whether or not A is unit
   69: *>           triangular as follows:
   70: *>
   71: *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   72: *>
   73: *>              DIAG = 'N' or 'n'   A is not assumed to be unit
   74: *>                                  triangular.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] N
   78: *> \verbatim
   79: *>          N is INTEGER
   80: *>           On entry, N specifies the order of the matrix A.
   81: *>           N must be at least zero.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] AP
   85: *> \verbatim
   86: *>          AP is DOUBLE PRECISION array of DIMENSION at least
   87: *>           ( ( n*( n + 1 ) )/2 ).
   88: *>           Before entry with  UPLO = 'U' or 'u', the array AP must
   89: *>           contain the upper triangular matrix packed sequentially,
   90: *>           column by column, so that AP( 1 ) contains a( 1, 1 ),
   91: *>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
   92: *>           respectively, and so on.
   93: *>           Before entry with UPLO = 'L' or 'l', the array AP must
   94: *>           contain the lower triangular matrix packed sequentially,
   95: *>           column by column, so that AP( 1 ) contains a( 1, 1 ),
   96: *>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
   97: *>           respectively, and so on.
   98: *>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
   99: *>           A are not referenced, but are assumed to be unity.
  100: *> \endverbatim
  101: *>
  102: *> \param[in,out] X
  103: *> \verbatim
  104: *>          X is DOUBLE PRECISION array of dimension at least
  105: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
  106: *>           Before entry, the incremented array X must contain the n
  107: *>           element right-hand side vector b. On exit, X is overwritten
  108: *>           with the solution vector x.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] INCX
  112: *> \verbatim
  113: *>          INCX is INTEGER
  114: *>           On entry, INCX specifies the increment for the elements of
  115: *>           X. INCX must not be zero.
  116: *> \endverbatim
  117: *
  118: *  Authors:
  119: *  ========
  120: *
  121: *> \author Univ. of Tennessee 
  122: *> \author Univ. of California Berkeley 
  123: *> \author Univ. of Colorado Denver 
  124: *> \author NAG Ltd. 
  125: *
  126: *> \date November 2011
  127: *
  128: *> \ingroup double_blas_level2
  129: *
  130: *> \par Further Details:
  131: *  =====================
  132: *>
  133: *> \verbatim
  134: *>
  135: *>  Level 2 Blas routine.
  136: *>
  137: *>  -- Written on 22-October-1986.
  138: *>     Jack Dongarra, Argonne National Lab.
  139: *>     Jeremy Du Croz, Nag Central Office.
  140: *>     Sven Hammarling, Nag Central Office.
  141: *>     Richard Hanson, Sandia National Labs.
  142: *> \endverbatim
  143: *>
  144: *  =====================================================================
  145:       SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
  146: *
  147: *  -- Reference BLAS level2 routine (version 3.4.0) --
  148: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  149: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  150: *     November 2011
  151: *
  152: *     .. Scalar Arguments ..
  153:       INTEGER INCX,N
  154:       CHARACTER DIAG,TRANS,UPLO
  155: *     ..
  156: *     .. Array Arguments ..
  157:       DOUBLE PRECISION AP(*),X(*)
  158: *     ..
  159: *
  160: *  =====================================================================
  161: *
  162: *     .. Parameters ..
  163:       DOUBLE PRECISION ZERO
  164:       PARAMETER (ZERO=0.0D+0)
  165: *     ..
  166: *     .. Local Scalars ..
  167:       DOUBLE PRECISION TEMP
  168:       INTEGER I,INFO,IX,J,JX,K,KK,KX
  169:       LOGICAL NOUNIT
  170: *     ..
  171: *     .. External Functions ..
  172:       LOGICAL LSAME
  173:       EXTERNAL LSAME
  174: *     ..
  175: *     .. External Subroutines ..
  176:       EXTERNAL XERBLA
  177: *     ..
  178: *
  179: *     Test the input parameters.
  180: *
  181:       INFO = 0
  182:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  183:           INFO = 1
  184:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  185:      +         .NOT.LSAME(TRANS,'C')) THEN
  186:           INFO = 2
  187:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  188:           INFO = 3
  189:       ELSE IF (N.LT.0) THEN
  190:           INFO = 4
  191:       ELSE IF (INCX.EQ.0) THEN
  192:           INFO = 7
  193:       END IF
  194:       IF (INFO.NE.0) THEN
  195:           CALL XERBLA('DTPSV ',INFO)
  196:           RETURN
  197:       END IF
  198: *
  199: *     Quick return if possible.
  200: *
  201:       IF (N.EQ.0) RETURN
  202: *
  203:       NOUNIT = LSAME(DIAG,'N')
  204: *
  205: *     Set up the start point in X if the increment is not unity. This
  206: *     will be  ( N - 1 )*INCX  too small for descending loops.
  207: *
  208:       IF (INCX.LE.0) THEN
  209:           KX = 1 - (N-1)*INCX
  210:       ELSE IF (INCX.NE.1) THEN
  211:           KX = 1
  212:       END IF
  213: *
  214: *     Start the operations. In this version the elements of AP are
  215: *     accessed sequentially with one pass through AP.
  216: *
  217:       IF (LSAME(TRANS,'N')) THEN
  218: *
  219: *        Form  x := inv( A )*x.
  220: *
  221:           IF (LSAME(UPLO,'U')) THEN
  222:               KK = (N* (N+1))/2
  223:               IF (INCX.EQ.1) THEN
  224:                   DO 20 J = N,1,-1
  225:                       IF (X(J).NE.ZERO) THEN
  226:                           IF (NOUNIT) X(J) = X(J)/AP(KK)
  227:                           TEMP = X(J)
  228:                           K = KK - 1
  229:                           DO 10 I = J - 1,1,-1
  230:                               X(I) = X(I) - TEMP*AP(K)
  231:                               K = K - 1
  232:    10                     CONTINUE
  233:                       END IF
  234:                       KK = KK - J
  235:    20             CONTINUE
  236:               ELSE
  237:                   JX = KX + (N-1)*INCX
  238:                   DO 40 J = N,1,-1
  239:                       IF (X(JX).NE.ZERO) THEN
  240:                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
  241:                           TEMP = X(JX)
  242:                           IX = JX
  243:                           DO 30 K = KK - 1,KK - J + 1,-1
  244:                               IX = IX - INCX
  245:                               X(IX) = X(IX) - TEMP*AP(K)
  246:    30                     CONTINUE
  247:                       END IF
  248:                       JX = JX - INCX
  249:                       KK = KK - J
  250:    40             CONTINUE
  251:               END IF
  252:           ELSE
  253:               KK = 1
  254:               IF (INCX.EQ.1) THEN
  255:                   DO 60 J = 1,N
  256:                       IF (X(J).NE.ZERO) THEN
  257:                           IF (NOUNIT) X(J) = X(J)/AP(KK)
  258:                           TEMP = X(J)
  259:                           K = KK + 1
  260:                           DO 50 I = J + 1,N
  261:                               X(I) = X(I) - TEMP*AP(K)
  262:                               K = K + 1
  263:    50                     CONTINUE
  264:                       END IF
  265:                       KK = KK + (N-J+1)
  266:    60             CONTINUE
  267:               ELSE
  268:                   JX = KX
  269:                   DO 80 J = 1,N
  270:                       IF (X(JX).NE.ZERO) THEN
  271:                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
  272:                           TEMP = X(JX)
  273:                           IX = JX
  274:                           DO 70 K = KK + 1,KK + N - J
  275:                               IX = IX + INCX
  276:                               X(IX) = X(IX) - TEMP*AP(K)
  277:    70                     CONTINUE
  278:                       END IF
  279:                       JX = JX + INCX
  280:                       KK = KK + (N-J+1)
  281:    80             CONTINUE
  282:               END IF
  283:           END IF
  284:       ELSE
  285: *
  286: *        Form  x := inv( A**T )*x.
  287: *
  288:           IF (LSAME(UPLO,'U')) THEN
  289:               KK = 1
  290:               IF (INCX.EQ.1) THEN
  291:                   DO 100 J = 1,N
  292:                       TEMP = X(J)
  293:                       K = KK
  294:                       DO 90 I = 1,J - 1
  295:                           TEMP = TEMP - AP(K)*X(I)
  296:                           K = K + 1
  297:    90                 CONTINUE
  298:                       IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
  299:                       X(J) = TEMP
  300:                       KK = KK + J
  301:   100             CONTINUE
  302:               ELSE
  303:                   JX = KX
  304:                   DO 120 J = 1,N
  305:                       TEMP = X(JX)
  306:                       IX = KX
  307:                       DO 110 K = KK,KK + J - 2
  308:                           TEMP = TEMP - AP(K)*X(IX)
  309:                           IX = IX + INCX
  310:   110                 CONTINUE
  311:                       IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
  312:                       X(JX) = TEMP
  313:                       JX = JX + INCX
  314:                       KK = KK + J
  315:   120             CONTINUE
  316:               END IF
  317:           ELSE
  318:               KK = (N* (N+1))/2
  319:               IF (INCX.EQ.1) THEN
  320:                   DO 140 J = N,1,-1
  321:                       TEMP = X(J)
  322:                       K = KK
  323:                       DO 130 I = N,J + 1,-1
  324:                           TEMP = TEMP - AP(K)*X(I)
  325:                           K = K - 1
  326:   130                 CONTINUE
  327:                       IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
  328:                       X(J) = TEMP
  329:                       KK = KK - (N-J+1)
  330:   140             CONTINUE
  331:               ELSE
  332:                   KX = KX + (N-1)*INCX
  333:                   JX = KX
  334:                   DO 160 J = N,1,-1
  335:                       TEMP = X(JX)
  336:                       IX = KX
  337:                       DO 150 K = KK,KK - (N- (J+1)),-1
  338:                           TEMP = TEMP - AP(K)*X(IX)
  339:                           IX = IX - INCX
  340:   150                 CONTINUE
  341:                       IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
  342:                       X(JX) = TEMP
  343:                       JX = JX - INCX
  344:                       KK = KK - (N-J+1)
  345:   160             CONTINUE
  346:               END IF
  347:           END IF
  348:       END IF
  349: *
  350:       RETURN
  351: *
  352: *     End of DTPSV .
  353: *
  354:       END

CVSweb interface <joel.bertrand@systella.fr>