File:  [local] / rpl / lapack / blas / dtpmv.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Tue May 29 06:55:14 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DTPMV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
   12: *
   13: *       .. Scalar Arguments ..
   14: *       INTEGER INCX,N
   15: *       CHARACTER DIAG,TRANS,UPLO
   16: *       ..
   17: *       .. Array Arguments ..
   18: *       DOUBLE PRECISION AP(*),X(*)
   19: *       ..
   20: *
   21: *
   22: *> \par Purpose:
   23: *  =============
   24: *>
   25: *> \verbatim
   26: *>
   27: *> DTPMV  performs one of the matrix-vector operations
   28: *>
   29: *>    x := A*x,   or   x := A**T*x,
   30: *>
   31: *> where x is an n element vector and  A is an n by n unit, or non-unit,
   32: *> upper or lower triangular matrix, supplied in packed form.
   33: *> \endverbatim
   34: *
   35: *  Arguments:
   36: *  ==========
   37: *
   38: *> \param[in] UPLO
   39: *> \verbatim
   40: *>          UPLO is CHARACTER*1
   41: *>           On entry, UPLO specifies whether the matrix is an upper or
   42: *>           lower triangular matrix as follows:
   43: *>
   44: *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   45: *>
   46: *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   47: *> \endverbatim
   48: *>
   49: *> \param[in] TRANS
   50: *> \verbatim
   51: *>          TRANS is CHARACTER*1
   52: *>           On entry, TRANS specifies the operation to be performed as
   53: *>           follows:
   54: *>
   55: *>              TRANS = 'N' or 'n'   x := A*x.
   56: *>
   57: *>              TRANS = 'T' or 't'   x := A**T*x.
   58: *>
   59: *>              TRANS = 'C' or 'c'   x := A**T*x.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] DIAG
   63: *> \verbatim
   64: *>          DIAG is CHARACTER*1
   65: *>           On entry, DIAG specifies whether or not A is unit
   66: *>           triangular as follows:
   67: *>
   68: *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   69: *>
   70: *>              DIAG = 'N' or 'n'   A is not assumed to be unit
   71: *>                                  triangular.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>           On entry, N specifies the order of the matrix A.
   78: *>           N must be at least zero.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] AP
   82: *> \verbatim
   83: *>          AP is DOUBLE PRECISION array, dimension at least
   84: *>           ( ( n*( n + 1 ) )/2 ).
   85: *>           Before entry with  UPLO = 'U' or 'u', the array AP must
   86: *>           contain the upper triangular matrix packed sequentially,
   87: *>           column by column, so that AP( 1 ) contains a( 1, 1 ),
   88: *>           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
   89: *>           respectively, and so on.
   90: *>           Before entry with UPLO = 'L' or 'l', the array AP must
   91: *>           contain the lower triangular matrix packed sequentially,
   92: *>           column by column, so that AP( 1 ) contains a( 1, 1 ),
   93: *>           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
   94: *>           respectively, and so on.
   95: *>           Note that when  DIAG = 'U' or 'u', the diagonal elements of
   96: *>           A are not referenced, but are assumed to be unity.
   97: *> \endverbatim
   98: *>
   99: *> \param[in,out] X
  100: *> \verbatim
  101: *>          X is DOUBLE PRECISION array, dimension at least
  102: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
  103: *>           Before entry, the incremented array X must contain the n
  104: *>           element vector x. On exit, X is overwritten with the
  105: *>           transformed vector x.
  106: *> \endverbatim
  107: *>
  108: *> \param[in] INCX
  109: *> \verbatim
  110: *>          INCX is INTEGER
  111: *>           On entry, INCX specifies the increment for the elements of
  112: *>           X. INCX must not be zero.
  113: *> \endverbatim
  114: *
  115: *  Authors:
  116: *  ========
  117: *
  118: *> \author Univ. of Tennessee
  119: *> \author Univ. of California Berkeley
  120: *> \author Univ. of Colorado Denver
  121: *> \author NAG Ltd.
  122: *
  123: *> \date December 2016
  124: *
  125: *> \ingroup double_blas_level2
  126: *
  127: *> \par Further Details:
  128: *  =====================
  129: *>
  130: *> \verbatim
  131: *>
  132: *>  Level 2 Blas routine.
  133: *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
  134: *>
  135: *>  -- Written on 22-October-1986.
  136: *>     Jack Dongarra, Argonne National Lab.
  137: *>     Jeremy Du Croz, Nag Central Office.
  138: *>     Sven Hammarling, Nag Central Office.
  139: *>     Richard Hanson, Sandia National Labs.
  140: *> \endverbatim
  141: *>
  142: *  =====================================================================
  143:       SUBROUTINE DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
  144: *
  145: *  -- Reference BLAS level2 routine (version 3.7.0) --
  146: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  147: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148: *     December 2016
  149: *
  150: *     .. Scalar Arguments ..
  151:       INTEGER INCX,N
  152:       CHARACTER DIAG,TRANS,UPLO
  153: *     ..
  154: *     .. Array Arguments ..
  155:       DOUBLE PRECISION AP(*),X(*)
  156: *     ..
  157: *
  158: *  =====================================================================
  159: *
  160: *     .. Parameters ..
  161:       DOUBLE PRECISION ZERO
  162:       PARAMETER (ZERO=0.0D+0)
  163: *     ..
  164: *     .. Local Scalars ..
  165:       DOUBLE PRECISION TEMP
  166:       INTEGER I,INFO,IX,J,JX,K,KK,KX
  167:       LOGICAL NOUNIT
  168: *     ..
  169: *     .. External Functions ..
  170:       LOGICAL LSAME
  171:       EXTERNAL LSAME
  172: *     ..
  173: *     .. External Subroutines ..
  174:       EXTERNAL XERBLA
  175: *     ..
  176: *
  177: *     Test the input parameters.
  178: *
  179:       INFO = 0
  180:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  181:           INFO = 1
  182:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  183:      +         .NOT.LSAME(TRANS,'C')) THEN
  184:           INFO = 2
  185:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  186:           INFO = 3
  187:       ELSE IF (N.LT.0) THEN
  188:           INFO = 4
  189:       ELSE IF (INCX.EQ.0) THEN
  190:           INFO = 7
  191:       END IF
  192:       IF (INFO.NE.0) THEN
  193:           CALL XERBLA('DTPMV ',INFO)
  194:           RETURN
  195:       END IF
  196: *
  197: *     Quick return if possible.
  198: *
  199:       IF (N.EQ.0) RETURN
  200: *
  201:       NOUNIT = LSAME(DIAG,'N')
  202: *
  203: *     Set up the start point in X if the increment is not unity. This
  204: *     will be  ( N - 1 )*INCX  too small for descending loops.
  205: *
  206:       IF (INCX.LE.0) THEN
  207:           KX = 1 - (N-1)*INCX
  208:       ELSE IF (INCX.NE.1) THEN
  209:           KX = 1
  210:       END IF
  211: *
  212: *     Start the operations. In this version the elements of AP are
  213: *     accessed sequentially with one pass through AP.
  214: *
  215:       IF (LSAME(TRANS,'N')) THEN
  216: *
  217: *        Form  x:= A*x.
  218: *
  219:           IF (LSAME(UPLO,'U')) THEN
  220:               KK = 1
  221:               IF (INCX.EQ.1) THEN
  222:                   DO 20 J = 1,N
  223:                       IF (X(J).NE.ZERO) THEN
  224:                           TEMP = X(J)
  225:                           K = KK
  226:                           DO 10 I = 1,J - 1
  227:                               X(I) = X(I) + TEMP*AP(K)
  228:                               K = K + 1
  229:    10                     CONTINUE
  230:                           IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
  231:                       END IF
  232:                       KK = KK + J
  233:    20             CONTINUE
  234:               ELSE
  235:                   JX = KX
  236:                   DO 40 J = 1,N
  237:                       IF (X(JX).NE.ZERO) THEN
  238:                           TEMP = X(JX)
  239:                           IX = KX
  240:                           DO 30 K = KK,KK + J - 2
  241:                               X(IX) = X(IX) + TEMP*AP(K)
  242:                               IX = IX + INCX
  243:    30                     CONTINUE
  244:                           IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
  245:                       END IF
  246:                       JX = JX + INCX
  247:                       KK = KK + J
  248:    40             CONTINUE
  249:               END IF
  250:           ELSE
  251:               KK = (N* (N+1))/2
  252:               IF (INCX.EQ.1) THEN
  253:                   DO 60 J = N,1,-1
  254:                       IF (X(J).NE.ZERO) THEN
  255:                           TEMP = X(J)
  256:                           K = KK
  257:                           DO 50 I = N,J + 1,-1
  258:                               X(I) = X(I) + TEMP*AP(K)
  259:                               K = K - 1
  260:    50                     CONTINUE
  261:                           IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
  262:                       END IF
  263:                       KK = KK - (N-J+1)
  264:    60             CONTINUE
  265:               ELSE
  266:                   KX = KX + (N-1)*INCX
  267:                   JX = KX
  268:                   DO 80 J = N,1,-1
  269:                       IF (X(JX).NE.ZERO) THEN
  270:                           TEMP = X(JX)
  271:                           IX = KX
  272:                           DO 70 K = KK,KK - (N- (J+1)),-1
  273:                               X(IX) = X(IX) + TEMP*AP(K)
  274:                               IX = IX - INCX
  275:    70                     CONTINUE
  276:                           IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
  277:                       END IF
  278:                       JX = JX - INCX
  279:                       KK = KK - (N-J+1)
  280:    80             CONTINUE
  281:               END IF
  282:           END IF
  283:       ELSE
  284: *
  285: *        Form  x := A**T*x.
  286: *
  287:           IF (LSAME(UPLO,'U')) THEN
  288:               KK = (N* (N+1))/2
  289:               IF (INCX.EQ.1) THEN
  290:                   DO 100 J = N,1,-1
  291:                       TEMP = X(J)
  292:                       IF (NOUNIT) TEMP = TEMP*AP(KK)
  293:                       K = KK - 1
  294:                       DO 90 I = J - 1,1,-1
  295:                           TEMP = TEMP + AP(K)*X(I)
  296:                           K = K - 1
  297:    90                 CONTINUE
  298:                       X(J) = TEMP
  299:                       KK = KK - J
  300:   100             CONTINUE
  301:               ELSE
  302:                   JX = KX + (N-1)*INCX
  303:                   DO 120 J = N,1,-1
  304:                       TEMP = X(JX)
  305:                       IX = JX
  306:                       IF (NOUNIT) TEMP = TEMP*AP(KK)
  307:                       DO 110 K = KK - 1,KK - J + 1,-1
  308:                           IX = IX - INCX
  309:                           TEMP = TEMP + AP(K)*X(IX)
  310:   110                 CONTINUE
  311:                       X(JX) = TEMP
  312:                       JX = JX - INCX
  313:                       KK = KK - J
  314:   120             CONTINUE
  315:               END IF
  316:           ELSE
  317:               KK = 1
  318:               IF (INCX.EQ.1) THEN
  319:                   DO 140 J = 1,N
  320:                       TEMP = X(J)
  321:                       IF (NOUNIT) TEMP = TEMP*AP(KK)
  322:                       K = KK + 1
  323:                       DO 130 I = J + 1,N
  324:                           TEMP = TEMP + AP(K)*X(I)
  325:                           K = K + 1
  326:   130                 CONTINUE
  327:                       X(J) = TEMP
  328:                       KK = KK + (N-J+1)
  329:   140             CONTINUE
  330:               ELSE
  331:                   JX = KX
  332:                   DO 160 J = 1,N
  333:                       TEMP = X(JX)
  334:                       IX = JX
  335:                       IF (NOUNIT) TEMP = TEMP*AP(KK)
  336:                       DO 150 K = KK + 1,KK + N - J
  337:                           IX = IX + INCX
  338:                           TEMP = TEMP + AP(K)*X(IX)
  339:   150                 CONTINUE
  340:                       X(JX) = TEMP
  341:                       JX = JX + INCX
  342:                       KK = KK + (N-J+1)
  343:   160             CONTINUE
  344:               END IF
  345:           END IF
  346:       END IF
  347: *
  348:       RETURN
  349: *
  350: *     End of DTPMV .
  351: *
  352:       END

CVSweb interface <joel.bertrand@systella.fr>