File:  [local] / rpl / lapack / blas / dtbsv.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:44 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTBSV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
   12: *
   13: *       .. Scalar Arguments ..
   14: *       INTEGER INCX,K,LDA,N
   15: *       CHARACTER DIAG,TRANS,UPLO
   16: *       ..
   17: *       .. Array Arguments ..
   18: *       DOUBLE PRECISION A(LDA,*),X(*)
   19: *       ..
   20: *
   21: *
   22: *> \par Purpose:
   23: *  =============
   24: *>
   25: *> \verbatim
   26: *>
   27: *> DTBSV  solves one of the systems of equations
   28: *>
   29: *>    A*x = b,   or   A**T*x = b,
   30: *>
   31: *> where b and x are n element vectors and A is an n by n unit, or
   32: *> non-unit, upper or lower triangular band matrix, with ( k + 1 )
   33: *> diagonals.
   34: *>
   35: *> No test for singularity or near-singularity is included in this
   36: *> routine. Such tests must be performed before calling this routine.
   37: *> \endverbatim
   38: *
   39: *  Arguments:
   40: *  ==========
   41: *
   42: *> \param[in] UPLO
   43: *> \verbatim
   44: *>          UPLO is CHARACTER*1
   45: *>           On entry, UPLO specifies whether the matrix is an upper or
   46: *>           lower triangular matrix as follows:
   47: *>
   48: *>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
   49: *>
   50: *>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
   51: *> \endverbatim
   52: *>
   53: *> \param[in] TRANS
   54: *> \verbatim
   55: *>          TRANS is CHARACTER*1
   56: *>           On entry, TRANS specifies the equations to be solved as
   57: *>           follows:
   58: *>
   59: *>              TRANS = 'N' or 'n'   A*x = b.
   60: *>
   61: *>              TRANS = 'T' or 't'   A**T*x = b.
   62: *>
   63: *>              TRANS = 'C' or 'c'   A**T*x = b.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] DIAG
   67: *> \verbatim
   68: *>          DIAG is CHARACTER*1
   69: *>           On entry, DIAG specifies whether or not A is unit
   70: *>           triangular as follows:
   71: *>
   72: *>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
   73: *>
   74: *>              DIAG = 'N' or 'n'   A is not assumed to be unit
   75: *>                                  triangular.
   76: *> \endverbatim
   77: *>
   78: *> \param[in] N
   79: *> \verbatim
   80: *>          N is INTEGER
   81: *>           On entry, N specifies the order of the matrix A.
   82: *>           N must be at least zero.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] K
   86: *> \verbatim
   87: *>          K is INTEGER
   88: *>           On entry with UPLO = 'U' or 'u', K specifies the number of
   89: *>           super-diagonals of the matrix A.
   90: *>           On entry with UPLO = 'L' or 'l', K specifies the number of
   91: *>           sub-diagonals of the matrix A.
   92: *>           K must satisfy  0 .le. K.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] A
   96: *> \verbatim
   97: *>          A is DOUBLE PRECISION array, dimension ( LDA, N )
   98: *>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
   99: *>           by n part of the array A must contain the upper triangular
  100: *>           band part of the matrix of coefficients, supplied column by
  101: *>           column, with the leading diagonal of the matrix in row
  102: *>           ( k + 1 ) of the array, the first super-diagonal starting at
  103: *>           position 2 in row k, and so on. The top left k by k triangle
  104: *>           of the array A is not referenced.
  105: *>           The following program segment will transfer an upper
  106: *>           triangular band matrix from conventional full matrix storage
  107: *>           to band storage:
  108: *>
  109: *>                 DO 20, J = 1, N
  110: *>                    M = K + 1 - J
  111: *>                    DO 10, I = MAX( 1, J - K ), J
  112: *>                       A( M + I, J ) = matrix( I, J )
  113: *>              10    CONTINUE
  114: *>              20 CONTINUE
  115: *>
  116: *>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  117: *>           by n part of the array A must contain the lower triangular
  118: *>           band part of the matrix of coefficients, supplied column by
  119: *>           column, with the leading diagonal of the matrix in row 1 of
  120: *>           the array, the first sub-diagonal starting at position 1 in
  121: *>           row 2, and so on. The bottom right k by k triangle of the
  122: *>           array A is not referenced.
  123: *>           The following program segment will transfer a lower
  124: *>           triangular band matrix from conventional full matrix storage
  125: *>           to band storage:
  126: *>
  127: *>                 DO 20, J = 1, N
  128: *>                    M = 1 - J
  129: *>                    DO 10, I = J, MIN( N, J + K )
  130: *>                       A( M + I, J ) = matrix( I, J )
  131: *>              10    CONTINUE
  132: *>              20 CONTINUE
  133: *>
  134: *>           Note that when DIAG = 'U' or 'u' the elements of the array A
  135: *>           corresponding to the diagonal elements of the matrix are not
  136: *>           referenced, but are assumed to be unity.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LDA
  140: *> \verbatim
  141: *>          LDA is INTEGER
  142: *>           On entry, LDA specifies the first dimension of A as declared
  143: *>           in the calling (sub) program. LDA must be at least
  144: *>           ( k + 1 ).
  145: *> \endverbatim
  146: *>
  147: *> \param[in,out] X
  148: *> \verbatim
  149: *>          X is DOUBLE PRECISION array, dimension at least
  150: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
  151: *>           Before entry, the incremented array X must contain the n
  152: *>           element right-hand side vector b. On exit, X is overwritten
  153: *>           with the solution vector x.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] INCX
  157: *> \verbatim
  158: *>          INCX is INTEGER
  159: *>           On entry, INCX specifies the increment for the elements of
  160: *>           X. INCX must not be zero.
  161: *> \endverbatim
  162: *
  163: *  Authors:
  164: *  ========
  165: *
  166: *> \author Univ. of Tennessee
  167: *> \author Univ. of California Berkeley
  168: *> \author Univ. of Colorado Denver
  169: *> \author NAG Ltd.
  170: *
  171: *> \ingroup double_blas_level2
  172: *
  173: *> \par Further Details:
  174: *  =====================
  175: *>
  176: *> \verbatim
  177: *>
  178: *>  Level 2 Blas routine.
  179: *>
  180: *>  -- Written on 22-October-1986.
  181: *>     Jack Dongarra, Argonne National Lab.
  182: *>     Jeremy Du Croz, Nag Central Office.
  183: *>     Sven Hammarling, Nag Central Office.
  184: *>     Richard Hanson, Sandia National Labs.
  185: *> \endverbatim
  186: *>
  187: *  =====================================================================
  188:       SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
  189: *
  190: *  -- Reference BLAS level2 routine --
  191: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  192: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  193: *
  194: *     .. Scalar Arguments ..
  195:       INTEGER INCX,K,LDA,N
  196:       CHARACTER DIAG,TRANS,UPLO
  197: *     ..
  198: *     .. Array Arguments ..
  199:       DOUBLE PRECISION A(LDA,*),X(*)
  200: *     ..
  201: *
  202: *  =====================================================================
  203: *
  204: *     .. Parameters ..
  205:       DOUBLE PRECISION ZERO
  206:       PARAMETER (ZERO=0.0D+0)
  207: *     ..
  208: *     .. Local Scalars ..
  209:       DOUBLE PRECISION TEMP
  210:       INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
  211:       LOGICAL NOUNIT
  212: *     ..
  213: *     .. External Functions ..
  214:       LOGICAL LSAME
  215:       EXTERNAL LSAME
  216: *     ..
  217: *     .. External Subroutines ..
  218:       EXTERNAL XERBLA
  219: *     ..
  220: *     .. Intrinsic Functions ..
  221:       INTRINSIC MAX,MIN
  222: *     ..
  223: *
  224: *     Test the input parameters.
  225: *
  226:       INFO = 0
  227:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  228:           INFO = 1
  229:       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  230:      +         .NOT.LSAME(TRANS,'C')) THEN
  231:           INFO = 2
  232:       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  233:           INFO = 3
  234:       ELSE IF (N.LT.0) THEN
  235:           INFO = 4
  236:       ELSE IF (K.LT.0) THEN
  237:           INFO = 5
  238:       ELSE IF (LDA.LT. (K+1)) THEN
  239:           INFO = 7
  240:       ELSE IF (INCX.EQ.0) THEN
  241:           INFO = 9
  242:       END IF
  243:       IF (INFO.NE.0) THEN
  244:           CALL XERBLA('DTBSV ',INFO)
  245:           RETURN
  246:       END IF
  247: *
  248: *     Quick return if possible.
  249: *
  250:       IF (N.EQ.0) RETURN
  251: *
  252:       NOUNIT = LSAME(DIAG,'N')
  253: *
  254: *     Set up the start point in X if the increment is not unity. This
  255: *     will be  ( N - 1 )*INCX  too small for descending loops.
  256: *
  257:       IF (INCX.LE.0) THEN
  258:           KX = 1 - (N-1)*INCX
  259:       ELSE IF (INCX.NE.1) THEN
  260:           KX = 1
  261:       END IF
  262: *
  263: *     Start the operations. In this version the elements of A are
  264: *     accessed by sequentially with one pass through A.
  265: *
  266:       IF (LSAME(TRANS,'N')) THEN
  267: *
  268: *        Form  x := inv( A )*x.
  269: *
  270:           IF (LSAME(UPLO,'U')) THEN
  271:               KPLUS1 = K + 1
  272:               IF (INCX.EQ.1) THEN
  273:                   DO 20 J = N,1,-1
  274:                       IF (X(J).NE.ZERO) THEN
  275:                           L = KPLUS1 - J
  276:                           IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
  277:                           TEMP = X(J)
  278:                           DO 10 I = J - 1,MAX(1,J-K),-1
  279:                               X(I) = X(I) - TEMP*A(L+I,J)
  280:    10                     CONTINUE
  281:                       END IF
  282:    20             CONTINUE
  283:               ELSE
  284:                   KX = KX + (N-1)*INCX
  285:                   JX = KX
  286:                   DO 40 J = N,1,-1
  287:                       KX = KX - INCX
  288:                       IF (X(JX).NE.ZERO) THEN
  289:                           IX = KX
  290:                           L = KPLUS1 - J
  291:                           IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
  292:                           TEMP = X(JX)
  293:                           DO 30 I = J - 1,MAX(1,J-K),-1
  294:                               X(IX) = X(IX) - TEMP*A(L+I,J)
  295:                               IX = IX - INCX
  296:    30                     CONTINUE
  297:                       END IF
  298:                       JX = JX - INCX
  299:    40             CONTINUE
  300:               END IF
  301:           ELSE
  302:               IF (INCX.EQ.1) THEN
  303:                   DO 60 J = 1,N
  304:                       IF (X(J).NE.ZERO) THEN
  305:                           L = 1 - J
  306:                           IF (NOUNIT) X(J) = X(J)/A(1,J)
  307:                           TEMP = X(J)
  308:                           DO 50 I = J + 1,MIN(N,J+K)
  309:                               X(I) = X(I) - TEMP*A(L+I,J)
  310:    50                     CONTINUE
  311:                       END IF
  312:    60             CONTINUE
  313:               ELSE
  314:                   JX = KX
  315:                   DO 80 J = 1,N
  316:                       KX = KX + INCX
  317:                       IF (X(JX).NE.ZERO) THEN
  318:                           IX = KX
  319:                           L = 1 - J
  320:                           IF (NOUNIT) X(JX) = X(JX)/A(1,J)
  321:                           TEMP = X(JX)
  322:                           DO 70 I = J + 1,MIN(N,J+K)
  323:                               X(IX) = X(IX) - TEMP*A(L+I,J)
  324:                               IX = IX + INCX
  325:    70                     CONTINUE
  326:                       END IF
  327:                       JX = JX + INCX
  328:    80             CONTINUE
  329:               END IF
  330:           END IF
  331:       ELSE
  332: *
  333: *        Form  x := inv( A**T)*x.
  334: *
  335:           IF (LSAME(UPLO,'U')) THEN
  336:               KPLUS1 = K + 1
  337:               IF (INCX.EQ.1) THEN
  338:                   DO 100 J = 1,N
  339:                       TEMP = X(J)
  340:                       L = KPLUS1 - J
  341:                       DO 90 I = MAX(1,J-K),J - 1
  342:                           TEMP = TEMP - A(L+I,J)*X(I)
  343:    90                 CONTINUE
  344:                       IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
  345:                       X(J) = TEMP
  346:   100             CONTINUE
  347:               ELSE
  348:                   JX = KX
  349:                   DO 120 J = 1,N
  350:                       TEMP = X(JX)
  351:                       IX = KX
  352:                       L = KPLUS1 - J
  353:                       DO 110 I = MAX(1,J-K),J - 1
  354:                           TEMP = TEMP - A(L+I,J)*X(IX)
  355:                           IX = IX + INCX
  356:   110                 CONTINUE
  357:                       IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
  358:                       X(JX) = TEMP
  359:                       JX = JX + INCX
  360:                       IF (J.GT.K) KX = KX + INCX
  361:   120             CONTINUE
  362:               END IF
  363:           ELSE
  364:               IF (INCX.EQ.1) THEN
  365:                   DO 140 J = N,1,-1
  366:                       TEMP = X(J)
  367:                       L = 1 - J
  368:                       DO 130 I = MIN(N,J+K),J + 1,-1
  369:                           TEMP = TEMP - A(L+I,J)*X(I)
  370:   130                 CONTINUE
  371:                       IF (NOUNIT) TEMP = TEMP/A(1,J)
  372:                       X(J) = TEMP
  373:   140             CONTINUE
  374:               ELSE
  375:                   KX = KX + (N-1)*INCX
  376:                   JX = KX
  377:                   DO 160 J = N,1,-1
  378:                       TEMP = X(JX)
  379:                       IX = KX
  380:                       L = 1 - J
  381:                       DO 150 I = MIN(N,J+K),J + 1,-1
  382:                           TEMP = TEMP - A(L+I,J)*X(IX)
  383:                           IX = IX - INCX
  384:   150                 CONTINUE
  385:                       IF (NOUNIT) TEMP = TEMP/A(1,J)
  386:                       X(JX) = TEMP
  387:                       JX = JX - INCX
  388:                       IF ((N-J).GE.K) KX = KX - INCX
  389:   160             CONTINUE
  390:               END IF
  391:           END IF
  392:       END IF
  393: *
  394:       RETURN
  395: *
  396: *     End of DTBSV
  397: *
  398:       END

CVSweb interface <joel.bertrand@systella.fr>