File:
[local] /
rpl /
lapack /
blas /
dsyrk.f
Revision
1.11:
download - view:
text,
annotated -
select for diffs -
revision graph
Mon Jan 27 09:28:13 2014 UTC (11 years, 3 months ago) by
bertrand
Branches:
MAIN
CVS tags:
rpl-4_1_24,
rpl-4_1_23,
rpl-4_1_22,
rpl-4_1_21,
rpl-4_1_20,
rpl-4_1_19,
rpl-4_1_18,
rpl-4_1_17,
HEAD
Cohérence.
1: *> \brief \b DSYRK
2: *
3: * =========== DOCUMENTATION ===========
4: *
5: * Online html documentation available at
6: * http://www.netlib.org/lapack/explore-html/
7: *
8: * Definition:
9: * ===========
10: *
11: * SUBROUTINE DSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
12: *
13: * .. Scalar Arguments ..
14: * DOUBLE PRECISION ALPHA,BETA
15: * INTEGER K,LDA,LDC,N
16: * CHARACTER TRANS,UPLO
17: * ..
18: * .. Array Arguments ..
19: * DOUBLE PRECISION A(LDA,*),C(LDC,*)
20: * ..
21: *
22: *
23: *> \par Purpose:
24: * =============
25: *>
26: *> \verbatim
27: *>
28: *> DSYRK performs one of the symmetric rank k operations
29: *>
30: *> C := alpha*A*A**T + beta*C,
31: *>
32: *> or
33: *>
34: *> C := alpha*A**T*A + beta*C,
35: *>
36: *> where alpha and beta are scalars, C is an n by n symmetric matrix
37: *> and A is an n by k matrix in the first case and a k by n matrix
38: *> in the second case.
39: *> \endverbatim
40: *
41: * Arguments:
42: * ==========
43: *
44: *> \param[in] UPLO
45: *> \verbatim
46: *> UPLO is CHARACTER*1
47: *> On entry, UPLO specifies whether the upper or lower
48: *> triangular part of the array C is to be referenced as
49: *> follows:
50: *>
51: *> UPLO = 'U' or 'u' Only the upper triangular part of C
52: *> is to be referenced.
53: *>
54: *> UPLO = 'L' or 'l' Only the lower triangular part of C
55: *> is to be referenced.
56: *> \endverbatim
57: *>
58: *> \param[in] TRANS
59: *> \verbatim
60: *> TRANS is CHARACTER*1
61: *> On entry, TRANS specifies the operation to be performed as
62: *> follows:
63: *>
64: *> TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C.
65: *>
66: *> TRANS = 'T' or 't' C := alpha*A**T*A + beta*C.
67: *>
68: *> TRANS = 'C' or 'c' C := alpha*A**T*A + beta*C.
69: *> \endverbatim
70: *>
71: *> \param[in] N
72: *> \verbatim
73: *> N is INTEGER
74: *> On entry, N specifies the order of the matrix C. N must be
75: *> at least zero.
76: *> \endverbatim
77: *>
78: *> \param[in] K
79: *> \verbatim
80: *> K is INTEGER
81: *> On entry with TRANS = 'N' or 'n', K specifies the number
82: *> of columns of the matrix A, and on entry with
83: *> TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
84: *> of rows of the matrix A. K must be at least zero.
85: *> \endverbatim
86: *>
87: *> \param[in] ALPHA
88: *> \verbatim
89: *> ALPHA is DOUBLE PRECISION.
90: *> On entry, ALPHA specifies the scalar alpha.
91: *> \endverbatim
92: *>
93: *> \param[in] A
94: *> \verbatim
95: *> A is DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
96: *> k when TRANS = 'N' or 'n', and is n otherwise.
97: *> Before entry with TRANS = 'N' or 'n', the leading n by k
98: *> part of the array A must contain the matrix A, otherwise
99: *> the leading k by n part of the array A must contain the
100: *> matrix A.
101: *> \endverbatim
102: *>
103: *> \param[in] LDA
104: *> \verbatim
105: *> LDA is INTEGER
106: *> On entry, LDA specifies the first dimension of A as declared
107: *> in the calling (sub) program. When TRANS = 'N' or 'n'
108: *> then LDA must be at least max( 1, n ), otherwise LDA must
109: *> be at least max( 1, k ).
110: *> \endverbatim
111: *>
112: *> \param[in] BETA
113: *> \verbatim
114: *> BETA is DOUBLE PRECISION.
115: *> On entry, BETA specifies the scalar beta.
116: *> \endverbatim
117: *>
118: *> \param[in,out] C
119: *> \verbatim
120: *> C is DOUBLE PRECISION array of DIMENSION ( LDC, n ).
121: *> Before entry with UPLO = 'U' or 'u', the leading n by n
122: *> upper triangular part of the array C must contain the upper
123: *> triangular part of the symmetric matrix and the strictly
124: *> lower triangular part of C is not referenced. On exit, the
125: *> upper triangular part of the array C is overwritten by the
126: *> upper triangular part of the updated matrix.
127: *> Before entry with UPLO = 'L' or 'l', the leading n by n
128: *> lower triangular part of the array C must contain the lower
129: *> triangular part of the symmetric matrix and the strictly
130: *> upper triangular part of C is not referenced. On exit, the
131: *> lower triangular part of the array C is overwritten by the
132: *> lower triangular part of the updated matrix.
133: *> \endverbatim
134: *>
135: *> \param[in] LDC
136: *> \verbatim
137: *> LDC is INTEGER
138: *> On entry, LDC specifies the first dimension of C as declared
139: *> in the calling (sub) program. LDC must be at least
140: *> max( 1, n ).
141: *> \endverbatim
142: *
143: * Authors:
144: * ========
145: *
146: *> \author Univ. of Tennessee
147: *> \author Univ. of California Berkeley
148: *> \author Univ. of Colorado Denver
149: *> \author NAG Ltd.
150: *
151: *> \date November 2011
152: *
153: *> \ingroup double_blas_level3
154: *
155: *> \par Further Details:
156: * =====================
157: *>
158: *> \verbatim
159: *>
160: *> Level 3 Blas routine.
161: *>
162: *> -- Written on 8-February-1989.
163: *> Jack Dongarra, Argonne National Laboratory.
164: *> Iain Duff, AERE Harwell.
165: *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
166: *> Sven Hammarling, Numerical Algorithms Group Ltd.
167: *> \endverbatim
168: *>
169: * =====================================================================
170: SUBROUTINE DSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
171: *
172: * -- Reference BLAS level3 routine (version 3.4.0) --
173: * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
174: * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175: * November 2011
176: *
177: * .. Scalar Arguments ..
178: DOUBLE PRECISION ALPHA,BETA
179: INTEGER K,LDA,LDC,N
180: CHARACTER TRANS,UPLO
181: * ..
182: * .. Array Arguments ..
183: DOUBLE PRECISION A(LDA,*),C(LDC,*)
184: * ..
185: *
186: * =====================================================================
187: *
188: * .. External Functions ..
189: LOGICAL LSAME
190: EXTERNAL LSAME
191: * ..
192: * .. External Subroutines ..
193: EXTERNAL XERBLA
194: * ..
195: * .. Intrinsic Functions ..
196: INTRINSIC MAX
197: * ..
198: * .. Local Scalars ..
199: DOUBLE PRECISION TEMP
200: INTEGER I,INFO,J,L,NROWA
201: LOGICAL UPPER
202: * ..
203: * .. Parameters ..
204: DOUBLE PRECISION ONE,ZERO
205: PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
206: * ..
207: *
208: * Test the input parameters.
209: *
210: IF (LSAME(TRANS,'N')) THEN
211: NROWA = N
212: ELSE
213: NROWA = K
214: END IF
215: UPPER = LSAME(UPLO,'U')
216: *
217: INFO = 0
218: IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
219: INFO = 1
220: ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
221: + (.NOT.LSAME(TRANS,'T')) .AND.
222: + (.NOT.LSAME(TRANS,'C'))) THEN
223: INFO = 2
224: ELSE IF (N.LT.0) THEN
225: INFO = 3
226: ELSE IF (K.LT.0) THEN
227: INFO = 4
228: ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
229: INFO = 7
230: ELSE IF (LDC.LT.MAX(1,N)) THEN
231: INFO = 10
232: END IF
233: IF (INFO.NE.0) THEN
234: CALL XERBLA('DSYRK ',INFO)
235: RETURN
236: END IF
237: *
238: * Quick return if possible.
239: *
240: IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
241: + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
242: *
243: * And when alpha.eq.zero.
244: *
245: IF (ALPHA.EQ.ZERO) THEN
246: IF (UPPER) THEN
247: IF (BETA.EQ.ZERO) THEN
248: DO 20 J = 1,N
249: DO 10 I = 1,J
250: C(I,J) = ZERO
251: 10 CONTINUE
252: 20 CONTINUE
253: ELSE
254: DO 40 J = 1,N
255: DO 30 I = 1,J
256: C(I,J) = BETA*C(I,J)
257: 30 CONTINUE
258: 40 CONTINUE
259: END IF
260: ELSE
261: IF (BETA.EQ.ZERO) THEN
262: DO 60 J = 1,N
263: DO 50 I = J,N
264: C(I,J) = ZERO
265: 50 CONTINUE
266: 60 CONTINUE
267: ELSE
268: DO 80 J = 1,N
269: DO 70 I = J,N
270: C(I,J) = BETA*C(I,J)
271: 70 CONTINUE
272: 80 CONTINUE
273: END IF
274: END IF
275: RETURN
276: END IF
277: *
278: * Start the operations.
279: *
280: IF (LSAME(TRANS,'N')) THEN
281: *
282: * Form C := alpha*A*A**T + beta*C.
283: *
284: IF (UPPER) THEN
285: DO 130 J = 1,N
286: IF (BETA.EQ.ZERO) THEN
287: DO 90 I = 1,J
288: C(I,J) = ZERO
289: 90 CONTINUE
290: ELSE IF (BETA.NE.ONE) THEN
291: DO 100 I = 1,J
292: C(I,J) = BETA*C(I,J)
293: 100 CONTINUE
294: END IF
295: DO 120 L = 1,K
296: IF (A(J,L).NE.ZERO) THEN
297: TEMP = ALPHA*A(J,L)
298: DO 110 I = 1,J
299: C(I,J) = C(I,J) + TEMP*A(I,L)
300: 110 CONTINUE
301: END IF
302: 120 CONTINUE
303: 130 CONTINUE
304: ELSE
305: DO 180 J = 1,N
306: IF (BETA.EQ.ZERO) THEN
307: DO 140 I = J,N
308: C(I,J) = ZERO
309: 140 CONTINUE
310: ELSE IF (BETA.NE.ONE) THEN
311: DO 150 I = J,N
312: C(I,J) = BETA*C(I,J)
313: 150 CONTINUE
314: END IF
315: DO 170 L = 1,K
316: IF (A(J,L).NE.ZERO) THEN
317: TEMP = ALPHA*A(J,L)
318: DO 160 I = J,N
319: C(I,J) = C(I,J) + TEMP*A(I,L)
320: 160 CONTINUE
321: END IF
322: 170 CONTINUE
323: 180 CONTINUE
324: END IF
325: ELSE
326: *
327: * Form C := alpha*A**T*A + beta*C.
328: *
329: IF (UPPER) THEN
330: DO 210 J = 1,N
331: DO 200 I = 1,J
332: TEMP = ZERO
333: DO 190 L = 1,K
334: TEMP = TEMP + A(L,I)*A(L,J)
335: 190 CONTINUE
336: IF (BETA.EQ.ZERO) THEN
337: C(I,J) = ALPHA*TEMP
338: ELSE
339: C(I,J) = ALPHA*TEMP + BETA*C(I,J)
340: END IF
341: 200 CONTINUE
342: 210 CONTINUE
343: ELSE
344: DO 240 J = 1,N
345: DO 230 I = J,N
346: TEMP = ZERO
347: DO 220 L = 1,K
348: TEMP = TEMP + A(L,I)*A(L,J)
349: 220 CONTINUE
350: IF (BETA.EQ.ZERO) THEN
351: C(I,J) = ALPHA*TEMP
352: ELSE
353: C(I,J) = ALPHA*TEMP + BETA*C(I,J)
354: END IF
355: 230 CONTINUE
356: 240 CONTINUE
357: END IF
358: END IF
359: *
360: RETURN
361: *
362: * End of DSYRK .
363: *
364: END
CVSweb interface <joel.bertrand@systella.fr>