File:  [local] / rpl / lapack / blas / dsyr2.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:43 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYR2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
   12: *
   13: *       .. Scalar Arguments ..
   14: *       DOUBLE PRECISION ALPHA
   15: *       INTEGER INCX,INCY,LDA,N
   16: *       CHARACTER UPLO
   17: *       ..
   18: *       .. Array Arguments ..
   19: *       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
   20: *       ..
   21: *
   22: *
   23: *> \par Purpose:
   24: *  =============
   25: *>
   26: *> \verbatim
   27: *>
   28: *> DSYR2  performs the symmetric rank 2 operation
   29: *>
   30: *>    A := alpha*x*y**T + alpha*y*x**T + A,
   31: *>
   32: *> where alpha is a scalar, x and y are n element vectors and A is an n
   33: *> by n symmetric matrix.
   34: *> \endverbatim
   35: *
   36: *  Arguments:
   37: *  ==========
   38: *
   39: *> \param[in] UPLO
   40: *> \verbatim
   41: *>          UPLO is CHARACTER*1
   42: *>           On entry, UPLO specifies whether the upper or lower
   43: *>           triangular part of the array A is to be referenced as
   44: *>           follows:
   45: *>
   46: *>              UPLO = 'U' or 'u'   Only the upper triangular part of A
   47: *>                                  is to be referenced.
   48: *>
   49: *>              UPLO = 'L' or 'l'   Only the lower triangular part of A
   50: *>                                  is to be referenced.
   51: *> \endverbatim
   52: *>
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>           On entry, N specifies the order of the matrix A.
   57: *>           N must be at least zero.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] ALPHA
   61: *> \verbatim
   62: *>          ALPHA is DOUBLE PRECISION.
   63: *>           On entry, ALPHA specifies the scalar alpha.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] X
   67: *> \verbatim
   68: *>          X is DOUBLE PRECISION array, dimension at least
   69: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
   70: *>           Before entry, the incremented array X must contain the n
   71: *>           element vector x.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] INCX
   75: *> \verbatim
   76: *>          INCX is INTEGER
   77: *>           On entry, INCX specifies the increment for the elements of
   78: *>           X. INCX must not be zero.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] Y
   82: *> \verbatim
   83: *>          Y is DOUBLE PRECISION array, dimension at least
   84: *>           ( 1 + ( n - 1 )*abs( INCY ) ).
   85: *>           Before entry, the incremented array Y must contain the n
   86: *>           element vector y.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] INCY
   90: *> \verbatim
   91: *>          INCY is INTEGER
   92: *>           On entry, INCY specifies the increment for the elements of
   93: *>           Y. INCY must not be zero.
   94: *> \endverbatim
   95: *>
   96: *> \param[in,out] A
   97: *> \verbatim
   98: *>          A is DOUBLE PRECISION array, dimension ( LDA, N )
   99: *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
  100: *>           upper triangular part of the array A must contain the upper
  101: *>           triangular part of the symmetric matrix and the strictly
  102: *>           lower triangular part of A is not referenced. On exit, the
  103: *>           upper triangular part of the array A is overwritten by the
  104: *>           upper triangular part of the updated matrix.
  105: *>           Before entry with UPLO = 'L' or 'l', the leading n by n
  106: *>           lower triangular part of the array A must contain the lower
  107: *>           triangular part of the symmetric matrix and the strictly
  108: *>           upper triangular part of A is not referenced. On exit, the
  109: *>           lower triangular part of the array A is overwritten by the
  110: *>           lower triangular part of the updated matrix.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDA
  114: *> \verbatim
  115: *>          LDA is INTEGER
  116: *>           On entry, LDA specifies the first dimension of A as declared
  117: *>           in the calling (sub) program. LDA must be at least
  118: *>           max( 1, n ).
  119: *> \endverbatim
  120: *
  121: *  Authors:
  122: *  ========
  123: *
  124: *> \author Univ. of Tennessee
  125: *> \author Univ. of California Berkeley
  126: *> \author Univ. of Colorado Denver
  127: *> \author NAG Ltd.
  128: *
  129: *> \ingroup double_blas_level2
  130: *
  131: *> \par Further Details:
  132: *  =====================
  133: *>
  134: *> \verbatim
  135: *>
  136: *>  Level 2 Blas routine.
  137: *>
  138: *>  -- Written on 22-October-1986.
  139: *>     Jack Dongarra, Argonne National Lab.
  140: *>     Jeremy Du Croz, Nag Central Office.
  141: *>     Sven Hammarling, Nag Central Office.
  142: *>     Richard Hanson, Sandia National Labs.
  143: *> \endverbatim
  144: *>
  145: *  =====================================================================
  146:       SUBROUTINE DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
  147: *
  148: *  -- Reference BLAS level2 routine --
  149: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  150: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  151: *
  152: *     .. Scalar Arguments ..
  153:       DOUBLE PRECISION ALPHA
  154:       INTEGER INCX,INCY,LDA,N
  155:       CHARACTER UPLO
  156: *     ..
  157: *     .. Array Arguments ..
  158:       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
  159: *     ..
  160: *
  161: *  =====================================================================
  162: *
  163: *     .. Parameters ..
  164:       DOUBLE PRECISION ZERO
  165:       PARAMETER (ZERO=0.0D+0)
  166: *     ..
  167: *     .. Local Scalars ..
  168:       DOUBLE PRECISION TEMP1,TEMP2
  169:       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
  170: *     ..
  171: *     .. External Functions ..
  172:       LOGICAL LSAME
  173:       EXTERNAL LSAME
  174: *     ..
  175: *     .. External Subroutines ..
  176:       EXTERNAL XERBLA
  177: *     ..
  178: *     .. Intrinsic Functions ..
  179:       INTRINSIC MAX
  180: *     ..
  181: *
  182: *     Test the input parameters.
  183: *
  184:       INFO = 0
  185:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  186:           INFO = 1
  187:       ELSE IF (N.LT.0) THEN
  188:           INFO = 2
  189:       ELSE IF (INCX.EQ.0) THEN
  190:           INFO = 5
  191:       ELSE IF (INCY.EQ.0) THEN
  192:           INFO = 7
  193:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  194:           INFO = 9
  195:       END IF
  196:       IF (INFO.NE.0) THEN
  197:           CALL XERBLA('DSYR2 ',INFO)
  198:           RETURN
  199:       END IF
  200: *
  201: *     Quick return if possible.
  202: *
  203:       IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
  204: *
  205: *     Set up the start points in X and Y if the increments are not both
  206: *     unity.
  207: *
  208:       IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
  209:           IF (INCX.GT.0) THEN
  210:               KX = 1
  211:           ELSE
  212:               KX = 1 - (N-1)*INCX
  213:           END IF
  214:           IF (INCY.GT.0) THEN
  215:               KY = 1
  216:           ELSE
  217:               KY = 1 - (N-1)*INCY
  218:           END IF
  219:           JX = KX
  220:           JY = KY
  221:       END IF
  222: *
  223: *     Start the operations. In this version the elements of A are
  224: *     accessed sequentially with one pass through the triangular part
  225: *     of A.
  226: *
  227:       IF (LSAME(UPLO,'U')) THEN
  228: *
  229: *        Form  A  when A is stored in the upper triangle.
  230: *
  231:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  232:               DO 20 J = 1,N
  233:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  234:                       TEMP1 = ALPHA*Y(J)
  235:                       TEMP2 = ALPHA*X(J)
  236:                       DO 10 I = 1,J
  237:                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
  238:    10                 CONTINUE
  239:                   END IF
  240:    20         CONTINUE
  241:           ELSE
  242:               DO 40 J = 1,N
  243:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  244:                       TEMP1 = ALPHA*Y(JY)
  245:                       TEMP2 = ALPHA*X(JX)
  246:                       IX = KX
  247:                       IY = KY
  248:                       DO 30 I = 1,J
  249:                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
  250:                           IX = IX + INCX
  251:                           IY = IY + INCY
  252:    30                 CONTINUE
  253:                   END IF
  254:                   JX = JX + INCX
  255:                   JY = JY + INCY
  256:    40         CONTINUE
  257:           END IF
  258:       ELSE
  259: *
  260: *        Form  A  when A is stored in the lower triangle.
  261: *
  262:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  263:               DO 60 J = 1,N
  264:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  265:                       TEMP1 = ALPHA*Y(J)
  266:                       TEMP2 = ALPHA*X(J)
  267:                       DO 50 I = J,N
  268:                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
  269:    50                 CONTINUE
  270:                   END IF
  271:    60         CONTINUE
  272:           ELSE
  273:               DO 80 J = 1,N
  274:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  275:                       TEMP1 = ALPHA*Y(JY)
  276:                       TEMP2 = ALPHA*X(JX)
  277:                       IX = JX
  278:                       IY = JY
  279:                       DO 70 I = J,N
  280:                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
  281:                           IX = IX + INCX
  282:                           IY = IY + INCY
  283:    70                 CONTINUE
  284:                   END IF
  285:                   JX = JX + INCX
  286:                   JY = JY + INCY
  287:    80         CONTINUE
  288:           END IF
  289:       END IF
  290: *
  291:       RETURN
  292: *
  293: *     End of DSYR2
  294: *
  295:       END

CVSweb interface <joel.bertrand@systella.fr>