File:  [local] / rpl / lapack / blas / dsymv.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:01 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE PRECISION ALPHA,BETA
    4:       INTEGER INCX,INCY,LDA,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  DSYMV  performs the matrix-vector  operation
   15: *
   16: *     y := alpha*A*x + beta*y,
   17: *
   18: *  where alpha and beta are scalars, x and y are n element vectors and
   19: *  A is an n by n symmetric matrix.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the array A is to be referenced as
   27: *           follows:
   28: *
   29: *              UPLO = 'U' or 'u'   Only the upper triangular part of A
   30: *                                  is to be referenced.
   31: *
   32: *              UPLO = 'L' or 'l'   Only the lower triangular part of A
   33: *                                  is to be referenced.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  ALPHA  - DOUBLE PRECISION.
   43: *           On entry, ALPHA specifies the scalar alpha.
   44: *           Unchanged on exit.
   45: *
   46: *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
   47: *           Before entry with  UPLO = 'U' or 'u', the leading n by n
   48: *           upper triangular part of the array A must contain the upper
   49: *           triangular part of the symmetric matrix and the strictly
   50: *           lower triangular part of A is not referenced.
   51: *           Before entry with UPLO = 'L' or 'l', the leading n by n
   52: *           lower triangular part of the array A must contain the lower
   53: *           triangular part of the symmetric matrix and the strictly
   54: *           upper triangular part of A is not referenced.
   55: *           Unchanged on exit.
   56: *
   57: *  LDA    - INTEGER.
   58: *           On entry, LDA specifies the first dimension of A as declared
   59: *           in the calling (sub) program. LDA must be at least
   60: *           max( 1, n ).
   61: *           Unchanged on exit.
   62: *
   63: *  X      - DOUBLE PRECISION array of dimension at least
   64: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   65: *           Before entry, the incremented array X must contain the n
   66: *           element vector x.
   67: *           Unchanged on exit.
   68: *
   69: *  INCX   - INTEGER.
   70: *           On entry, INCX specifies the increment for the elements of
   71: *           X. INCX must not be zero.
   72: *           Unchanged on exit.
   73: *
   74: *  BETA   - DOUBLE PRECISION.
   75: *           On entry, BETA specifies the scalar beta. When BETA is
   76: *           supplied as zero then Y need not be set on input.
   77: *           Unchanged on exit.
   78: *
   79: *  Y      - DOUBLE PRECISION array of dimension at least
   80: *           ( 1 + ( n - 1 )*abs( INCY ) ).
   81: *           Before entry, the incremented array Y must contain the n
   82: *           element vector y. On exit, Y is overwritten by the updated
   83: *           vector y.
   84: *
   85: *  INCY   - INTEGER.
   86: *           On entry, INCY specifies the increment for the elements of
   87: *           Y. INCY must not be zero.
   88: *           Unchanged on exit.
   89: *
   90: *  Further Details
   91: *  ===============
   92: *
   93: *  Level 2 Blas routine.
   94: *  The vector and matrix arguments are not referenced when N = 0, or M = 0
   95: *
   96: *  -- Written on 22-October-1986.
   97: *     Jack Dongarra, Argonne National Lab.
   98: *     Jeremy Du Croz, Nag Central Office.
   99: *     Sven Hammarling, Nag Central Office.
  100: *     Richard Hanson, Sandia National Labs.
  101: *
  102: *  =====================================================================
  103: *
  104: *     .. Parameters ..
  105:       DOUBLE PRECISION ONE,ZERO
  106:       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  107: *     ..
  108: *     .. Local Scalars ..
  109:       DOUBLE PRECISION TEMP1,TEMP2
  110:       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
  111: *     ..
  112: *     .. External Functions ..
  113:       LOGICAL LSAME
  114:       EXTERNAL LSAME
  115: *     ..
  116: *     .. External Subroutines ..
  117:       EXTERNAL XERBLA
  118: *     ..
  119: *     .. Intrinsic Functions ..
  120:       INTRINSIC MAX
  121: *     ..
  122: *
  123: *     Test the input parameters.
  124: *
  125:       INFO = 0
  126:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  127:           INFO = 1
  128:       ELSE IF (N.LT.0) THEN
  129:           INFO = 2
  130:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  131:           INFO = 5
  132:       ELSE IF (INCX.EQ.0) THEN
  133:           INFO = 7
  134:       ELSE IF (INCY.EQ.0) THEN
  135:           INFO = 10
  136:       END IF
  137:       IF (INFO.NE.0) THEN
  138:           CALL XERBLA('DSYMV ',INFO)
  139:           RETURN
  140:       END IF
  141: *
  142: *     Quick return if possible.
  143: *
  144:       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  145: *
  146: *     Set up the start points in  X  and  Y.
  147: *
  148:       IF (INCX.GT.0) THEN
  149:           KX = 1
  150:       ELSE
  151:           KX = 1 - (N-1)*INCX
  152:       END IF
  153:       IF (INCY.GT.0) THEN
  154:           KY = 1
  155:       ELSE
  156:           KY = 1 - (N-1)*INCY
  157:       END IF
  158: *
  159: *     Start the operations. In this version the elements of A are
  160: *     accessed sequentially with one pass through the triangular part
  161: *     of A.
  162: *
  163: *     First form  y := beta*y.
  164: *
  165:       IF (BETA.NE.ONE) THEN
  166:           IF (INCY.EQ.1) THEN
  167:               IF (BETA.EQ.ZERO) THEN
  168:                   DO 10 I = 1,N
  169:                       Y(I) = ZERO
  170:    10             CONTINUE
  171:               ELSE
  172:                   DO 20 I = 1,N
  173:                       Y(I) = BETA*Y(I)
  174:    20             CONTINUE
  175:               END IF
  176:           ELSE
  177:               IY = KY
  178:               IF (BETA.EQ.ZERO) THEN
  179:                   DO 30 I = 1,N
  180:                       Y(IY) = ZERO
  181:                       IY = IY + INCY
  182:    30             CONTINUE
  183:               ELSE
  184:                   DO 40 I = 1,N
  185:                       Y(IY) = BETA*Y(IY)
  186:                       IY = IY + INCY
  187:    40             CONTINUE
  188:               END IF
  189:           END IF
  190:       END IF
  191:       IF (ALPHA.EQ.ZERO) RETURN
  192:       IF (LSAME(UPLO,'U')) THEN
  193: *
  194: *        Form  y  when A is stored in upper triangle.
  195: *
  196:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  197:               DO 60 J = 1,N
  198:                   TEMP1 = ALPHA*X(J)
  199:                   TEMP2 = ZERO
  200:                   DO 50 I = 1,J - 1
  201:                       Y(I) = Y(I) + TEMP1*A(I,J)
  202:                       TEMP2 = TEMP2 + A(I,J)*X(I)
  203:    50             CONTINUE
  204:                   Y(J) = Y(J) + TEMP1*A(J,J) + ALPHA*TEMP2
  205:    60         CONTINUE
  206:           ELSE
  207:               JX = KX
  208:               JY = KY
  209:               DO 80 J = 1,N
  210:                   TEMP1 = ALPHA*X(JX)
  211:                   TEMP2 = ZERO
  212:                   IX = KX
  213:                   IY = KY
  214:                   DO 70 I = 1,J - 1
  215:                       Y(IY) = Y(IY) + TEMP1*A(I,J)
  216:                       TEMP2 = TEMP2 + A(I,J)*X(IX)
  217:                       IX = IX + INCX
  218:                       IY = IY + INCY
  219:    70             CONTINUE
  220:                   Y(JY) = Y(JY) + TEMP1*A(J,J) + ALPHA*TEMP2
  221:                   JX = JX + INCX
  222:                   JY = JY + INCY
  223:    80         CONTINUE
  224:           END IF
  225:       ELSE
  226: *
  227: *        Form  y  when A is stored in lower triangle.
  228: *
  229:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  230:               DO 100 J = 1,N
  231:                   TEMP1 = ALPHA*X(J)
  232:                   TEMP2 = ZERO
  233:                   Y(J) = Y(J) + TEMP1*A(J,J)
  234:                   DO 90 I = J + 1,N
  235:                       Y(I) = Y(I) + TEMP1*A(I,J)
  236:                       TEMP2 = TEMP2 + A(I,J)*X(I)
  237:    90             CONTINUE
  238:                   Y(J) = Y(J) + ALPHA*TEMP2
  239:   100         CONTINUE
  240:           ELSE
  241:               JX = KX
  242:               JY = KY
  243:               DO 120 J = 1,N
  244:                   TEMP1 = ALPHA*X(JX)
  245:                   TEMP2 = ZERO
  246:                   Y(JY) = Y(JY) + TEMP1*A(J,J)
  247:                   IX = JX
  248:                   IY = JY
  249:                   DO 110 I = J + 1,N
  250:                       IX = IX + INCX
  251:                       IY = IY + INCY
  252:                       Y(IY) = Y(IY) + TEMP1*A(I,J)
  253:                       TEMP2 = TEMP2 + A(I,J)*X(IX)
  254:   110             CONTINUE
  255:                   Y(JY) = Y(JY) + ALPHA*TEMP2
  256:                   JX = JX + INCX
  257:                   JY = JY + INCY
  258:   120         CONTINUE
  259:           END IF
  260:       END IF
  261: *
  262:       RETURN
  263: *
  264: *     End of DSYMV .
  265: *
  266:       END

CVSweb interface <joel.bertrand@systella.fr>