File:  [local] / rpl / lapack / blas / dsymv.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:43 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSYMV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *  Definition:
    9: *  ===========
   10: *
   11: *       SUBROUTINE DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
   12: *
   13: *       .. Scalar Arguments ..
   14: *       DOUBLE PRECISION ALPHA,BETA
   15: *       INTEGER INCX,INCY,LDA,N
   16: *       CHARACTER UPLO
   17: *       ..
   18: *       .. Array Arguments ..
   19: *       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
   20: *       ..
   21: *
   22: *
   23: *> \par Purpose:
   24: *  =============
   25: *>
   26: *> \verbatim
   27: *>
   28: *> DSYMV  performs the matrix-vector  operation
   29: *>
   30: *>    y := alpha*A*x + beta*y,
   31: *>
   32: *> where alpha and beta are scalars, x and y are n element vectors and
   33: *> A is an n by n symmetric matrix.
   34: *> \endverbatim
   35: *
   36: *  Arguments:
   37: *  ==========
   38: *
   39: *> \param[in] UPLO
   40: *> \verbatim
   41: *>          UPLO is CHARACTER*1
   42: *>           On entry, UPLO specifies whether the upper or lower
   43: *>           triangular part of the array A is to be referenced as
   44: *>           follows:
   45: *>
   46: *>              UPLO = 'U' or 'u'   Only the upper triangular part of A
   47: *>                                  is to be referenced.
   48: *>
   49: *>              UPLO = 'L' or 'l'   Only the lower triangular part of A
   50: *>                                  is to be referenced.
   51: *> \endverbatim
   52: *>
   53: *> \param[in] N
   54: *> \verbatim
   55: *>          N is INTEGER
   56: *>           On entry, N specifies the order of the matrix A.
   57: *>           N must be at least zero.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] ALPHA
   61: *> \verbatim
   62: *>          ALPHA is DOUBLE PRECISION.
   63: *>           On entry, ALPHA specifies the scalar alpha.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] A
   67: *> \verbatim
   68: *>          A is DOUBLE PRECISION array, dimension ( LDA, N )
   69: *>           Before entry with  UPLO = 'U' or 'u', the leading n by n
   70: *>           upper triangular part of the array A must contain the upper
   71: *>           triangular part of the symmetric matrix and the strictly
   72: *>           lower triangular part of A is not referenced.
   73: *>           Before entry with UPLO = 'L' or 'l', the leading n by n
   74: *>           lower triangular part of the array A must contain the lower
   75: *>           triangular part of the symmetric matrix and the strictly
   76: *>           upper triangular part of A is not referenced.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] LDA
   80: *> \verbatim
   81: *>          LDA is INTEGER
   82: *>           On entry, LDA specifies the first dimension of A as declared
   83: *>           in the calling (sub) program. LDA must be at least
   84: *>           max( 1, n ).
   85: *> \endverbatim
   86: *>
   87: *> \param[in] X
   88: *> \verbatim
   89: *>          X is DOUBLE PRECISION array, dimension at least
   90: *>           ( 1 + ( n - 1 )*abs( INCX ) ).
   91: *>           Before entry, the incremented array X must contain the n
   92: *>           element vector x.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] INCX
   96: *> \verbatim
   97: *>          INCX is INTEGER
   98: *>           On entry, INCX specifies the increment for the elements of
   99: *>           X. INCX must not be zero.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] BETA
  103: *> \verbatim
  104: *>          BETA is DOUBLE PRECISION.
  105: *>           On entry, BETA specifies the scalar beta. When BETA is
  106: *>           supplied as zero then Y need not be set on input.
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] Y
  110: *> \verbatim
  111: *>          Y is DOUBLE PRECISION array, dimension at least
  112: *>           ( 1 + ( n - 1 )*abs( INCY ) ).
  113: *>           Before entry, the incremented array Y must contain the n
  114: *>           element vector y. On exit, Y is overwritten by the updated
  115: *>           vector y.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] INCY
  119: *> \verbatim
  120: *>          INCY is INTEGER
  121: *>           On entry, INCY specifies the increment for the elements of
  122: *>           Y. INCY must not be zero.
  123: *> \endverbatim
  124: *
  125: *  Authors:
  126: *  ========
  127: *
  128: *> \author Univ. of Tennessee
  129: *> \author Univ. of California Berkeley
  130: *> \author Univ. of Colorado Denver
  131: *> \author NAG Ltd.
  132: *
  133: *> \ingroup double_blas_level2
  134: *
  135: *> \par Further Details:
  136: *  =====================
  137: *>
  138: *> \verbatim
  139: *>
  140: *>  Level 2 Blas routine.
  141: *>  The vector and matrix arguments are not referenced when N = 0, or M = 0
  142: *>
  143: *>  -- Written on 22-October-1986.
  144: *>     Jack Dongarra, Argonne National Lab.
  145: *>     Jeremy Du Croz, Nag Central Office.
  146: *>     Sven Hammarling, Nag Central Office.
  147: *>     Richard Hanson, Sandia National Labs.
  148: *> \endverbatim
  149: *>
  150: *  =====================================================================
  151:       SUBROUTINE DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  152: *
  153: *  -- Reference BLAS level2 routine --
  154: *  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
  155: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156: *
  157: *     .. Scalar Arguments ..
  158:       DOUBLE PRECISION ALPHA,BETA
  159:       INTEGER INCX,INCY,LDA,N
  160:       CHARACTER UPLO
  161: *     ..
  162: *     .. Array Arguments ..
  163:       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
  164: *     ..
  165: *
  166: *  =====================================================================
  167: *
  168: *     .. Parameters ..
  169:       DOUBLE PRECISION ONE,ZERO
  170:       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  171: *     ..
  172: *     .. Local Scalars ..
  173:       DOUBLE PRECISION TEMP1,TEMP2
  174:       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
  175: *     ..
  176: *     .. External Functions ..
  177:       LOGICAL LSAME
  178:       EXTERNAL LSAME
  179: *     ..
  180: *     .. External Subroutines ..
  181:       EXTERNAL XERBLA
  182: *     ..
  183: *     .. Intrinsic Functions ..
  184:       INTRINSIC MAX
  185: *     ..
  186: *
  187: *     Test the input parameters.
  188: *
  189:       INFO = 0
  190:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  191:           INFO = 1
  192:       ELSE IF (N.LT.0) THEN
  193:           INFO = 2
  194:       ELSE IF (LDA.LT.MAX(1,N)) THEN
  195:           INFO = 5
  196:       ELSE IF (INCX.EQ.0) THEN
  197:           INFO = 7
  198:       ELSE IF (INCY.EQ.0) THEN
  199:           INFO = 10
  200:       END IF
  201:       IF (INFO.NE.0) THEN
  202:           CALL XERBLA('DSYMV ',INFO)
  203:           RETURN
  204:       END IF
  205: *
  206: *     Quick return if possible.
  207: *
  208:       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  209: *
  210: *     Set up the start points in  X  and  Y.
  211: *
  212:       IF (INCX.GT.0) THEN
  213:           KX = 1
  214:       ELSE
  215:           KX = 1 - (N-1)*INCX
  216:       END IF
  217:       IF (INCY.GT.0) THEN
  218:           KY = 1
  219:       ELSE
  220:           KY = 1 - (N-1)*INCY
  221:       END IF
  222: *
  223: *     Start the operations. In this version the elements of A are
  224: *     accessed sequentially with one pass through the triangular part
  225: *     of A.
  226: *
  227: *     First form  y := beta*y.
  228: *
  229:       IF (BETA.NE.ONE) THEN
  230:           IF (INCY.EQ.1) THEN
  231:               IF (BETA.EQ.ZERO) THEN
  232:                   DO 10 I = 1,N
  233:                       Y(I) = ZERO
  234:    10             CONTINUE
  235:               ELSE
  236:                   DO 20 I = 1,N
  237:                       Y(I) = BETA*Y(I)
  238:    20             CONTINUE
  239:               END IF
  240:           ELSE
  241:               IY = KY
  242:               IF (BETA.EQ.ZERO) THEN
  243:                   DO 30 I = 1,N
  244:                       Y(IY) = ZERO
  245:                       IY = IY + INCY
  246:    30             CONTINUE
  247:               ELSE
  248:                   DO 40 I = 1,N
  249:                       Y(IY) = BETA*Y(IY)
  250:                       IY = IY + INCY
  251:    40             CONTINUE
  252:               END IF
  253:           END IF
  254:       END IF
  255:       IF (ALPHA.EQ.ZERO) RETURN
  256:       IF (LSAME(UPLO,'U')) THEN
  257: *
  258: *        Form  y  when A is stored in upper triangle.
  259: *
  260:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  261:               DO 60 J = 1,N
  262:                   TEMP1 = ALPHA*X(J)
  263:                   TEMP2 = ZERO
  264:                   DO 50 I = 1,J - 1
  265:                       Y(I) = Y(I) + TEMP1*A(I,J)
  266:                       TEMP2 = TEMP2 + A(I,J)*X(I)
  267:    50             CONTINUE
  268:                   Y(J) = Y(J) + TEMP1*A(J,J) + ALPHA*TEMP2
  269:    60         CONTINUE
  270:           ELSE
  271:               JX = KX
  272:               JY = KY
  273:               DO 80 J = 1,N
  274:                   TEMP1 = ALPHA*X(JX)
  275:                   TEMP2 = ZERO
  276:                   IX = KX
  277:                   IY = KY
  278:                   DO 70 I = 1,J - 1
  279:                       Y(IY) = Y(IY) + TEMP1*A(I,J)
  280:                       TEMP2 = TEMP2 + A(I,J)*X(IX)
  281:                       IX = IX + INCX
  282:                       IY = IY + INCY
  283:    70             CONTINUE
  284:                   Y(JY) = Y(JY) + TEMP1*A(J,J) + ALPHA*TEMP2
  285:                   JX = JX + INCX
  286:                   JY = JY + INCY
  287:    80         CONTINUE
  288:           END IF
  289:       ELSE
  290: *
  291: *        Form  y  when A is stored in lower triangle.
  292: *
  293:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  294:               DO 100 J = 1,N
  295:                   TEMP1 = ALPHA*X(J)
  296:                   TEMP2 = ZERO
  297:                   Y(J) = Y(J) + TEMP1*A(J,J)
  298:                   DO 90 I = J + 1,N
  299:                       Y(I) = Y(I) + TEMP1*A(I,J)
  300:                       TEMP2 = TEMP2 + A(I,J)*X(I)
  301:    90             CONTINUE
  302:                   Y(J) = Y(J) + ALPHA*TEMP2
  303:   100         CONTINUE
  304:           ELSE
  305:               JX = KX
  306:               JY = KY
  307:               DO 120 J = 1,N
  308:                   TEMP1 = ALPHA*X(JX)
  309:                   TEMP2 = ZERO
  310:                   Y(JY) = Y(JY) + TEMP1*A(J,J)
  311:                   IX = JX
  312:                   IY = JY
  313:                   DO 110 I = J + 1,N
  314:                       IX = IX + INCX
  315:                       IY = IY + INCY
  316:                       Y(IY) = Y(IY) + TEMP1*A(I,J)
  317:                       TEMP2 = TEMP2 + A(I,J)*X(IX)
  318:   110             CONTINUE
  319:                   Y(JY) = Y(JY) + ALPHA*TEMP2
  320:                   JX = JX + INCX
  321:                   JY = JY + INCY
  322:   120         CONTINUE
  323:           END IF
  324:       END IF
  325: *
  326:       RETURN
  327: *
  328: *     End of DSYMV
  329: *
  330:       END

CVSweb interface <joel.bertrand@systella.fr>