File:  [local] / rpl / lapack / blas / dsymm.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE PRECISION ALPHA,BETA
    4:       INTEGER LDA,LDB,LDC,M,N
    5:       CHARACTER SIDE,UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  DSYMM  performs one of the matrix-matrix operations
   15: *
   16: *     C := alpha*A*B + beta*C,
   17: *
   18: *  or
   19: *
   20: *     C := alpha*B*A + beta*C,
   21: *
   22: *  where alpha and beta are scalars,  A is a symmetric matrix and  B and
   23: *  C are  m by n matrices.
   24: *
   25: *  Arguments
   26: *  ==========
   27: *
   28: *  SIDE   - CHARACTER*1.
   29: *           On entry,  SIDE  specifies whether  the  symmetric matrix  A
   30: *           appears on the  left or right  in the  operation as follows:
   31: *
   32: *              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
   33: *
   34: *              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
   35: *
   36: *           Unchanged on exit.
   37: *
   38: *  UPLO   - CHARACTER*1.
   39: *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
   40: *           triangular  part  of  the  symmetric  matrix   A  is  to  be
   41: *           referenced as follows:
   42: *
   43: *              UPLO = 'U' or 'u'   Only the upper triangular part of the
   44: *                                  symmetric matrix is to be referenced.
   45: *
   46: *              UPLO = 'L' or 'l'   Only the lower triangular part of the
   47: *                                  symmetric matrix is to be referenced.
   48: *
   49: *           Unchanged on exit.
   50: *
   51: *  M      - INTEGER.
   52: *           On entry,  M  specifies the number of rows of the matrix  C.
   53: *           M  must be at least zero.
   54: *           Unchanged on exit.
   55: *
   56: *  N      - INTEGER.
   57: *           On entry, N specifies the number of columns of the matrix C.
   58: *           N  must be at least zero.
   59: *           Unchanged on exit.
   60: *
   61: *  ALPHA  - DOUBLE PRECISION.
   62: *           On entry, ALPHA specifies the scalar alpha.
   63: *           Unchanged on exit.
   64: *
   65: *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
   66: *           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
   67: *           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
   68: *           the array  A  must contain the  symmetric matrix,  such that
   69: *           when  UPLO = 'U' or 'u', the leading m by m upper triangular
   70: *           part of the array  A  must contain the upper triangular part
   71: *           of the  symmetric matrix and the  strictly  lower triangular
   72: *           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
   73: *           the leading  m by m  lower triangular part  of the  array  A
   74: *           must  contain  the  lower triangular part  of the  symmetric
   75: *           matrix and the  strictly upper triangular part of  A  is not
   76: *           referenced.
   77: *           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
   78: *           the array  A  must contain the  symmetric matrix,  such that
   79: *           when  UPLO = 'U' or 'u', the leading n by n upper triangular
   80: *           part of the array  A  must contain the upper triangular part
   81: *           of the  symmetric matrix and the  strictly  lower triangular
   82: *           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
   83: *           the leading  n by n  lower triangular part  of the  array  A
   84: *           must  contain  the  lower triangular part  of the  symmetric
   85: *           matrix and the  strictly upper triangular part of  A  is not
   86: *           referenced.
   87: *           Unchanged on exit.
   88: *
   89: *  LDA    - INTEGER.
   90: *           On entry, LDA specifies the first dimension of A as declared
   91: *           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
   92: *           LDA must be at least  max( 1, m ), otherwise  LDA must be at
   93: *           least  max( 1, n ).
   94: *           Unchanged on exit.
   95: *
   96: *  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
   97: *           Before entry, the leading  m by n part of the array  B  must
   98: *           contain the matrix B.
   99: *           Unchanged on exit.
  100: *
  101: *  LDB    - INTEGER.
  102: *           On entry, LDB specifies the first dimension of B as declared
  103: *           in  the  calling  (sub)  program.   LDB  must  be  at  least
  104: *           max( 1, m ).
  105: *           Unchanged on exit.
  106: *
  107: *  BETA   - DOUBLE PRECISION.
  108: *           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
  109: *           supplied as zero then C need not be set on input.
  110: *           Unchanged on exit.
  111: *
  112: *  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
  113: *           Before entry, the leading  m by n  part of the array  C must
  114: *           contain the matrix  C,  except when  beta  is zero, in which
  115: *           case C need not be set on entry.
  116: *           On exit, the array  C  is overwritten by the  m by n updated
  117: *           matrix.
  118: *
  119: *  LDC    - INTEGER.
  120: *           On entry, LDC specifies the first dimension of C as declared
  121: *           in  the  calling  (sub)  program.   LDC  must  be  at  least
  122: *           max( 1, m ).
  123: *           Unchanged on exit.
  124: *
  125: *  Further Details
  126: *  ===============
  127: *
  128: *  Level 3 Blas routine.
  129: *
  130: *  -- Written on 8-February-1989.
  131: *     Jack Dongarra, Argonne National Laboratory.
  132: *     Iain Duff, AERE Harwell.
  133: *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
  134: *     Sven Hammarling, Numerical Algorithms Group Ltd.
  135: *
  136: *  =====================================================================
  137: *
  138: *     .. External Functions ..
  139:       LOGICAL LSAME
  140:       EXTERNAL LSAME
  141: *     ..
  142: *     .. External Subroutines ..
  143:       EXTERNAL XERBLA
  144: *     ..
  145: *     .. Intrinsic Functions ..
  146:       INTRINSIC MAX
  147: *     ..
  148: *     .. Local Scalars ..
  149:       DOUBLE PRECISION TEMP1,TEMP2
  150:       INTEGER I,INFO,J,K,NROWA
  151:       LOGICAL UPPER
  152: *     ..
  153: *     .. Parameters ..
  154:       DOUBLE PRECISION ONE,ZERO
  155:       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  156: *     ..
  157: *
  158: *     Set NROWA as the number of rows of A.
  159: *
  160:       IF (LSAME(SIDE,'L')) THEN
  161:           NROWA = M
  162:       ELSE
  163:           NROWA = N
  164:       END IF
  165:       UPPER = LSAME(UPLO,'U')
  166: *
  167: *     Test the input parameters.
  168: *
  169:       INFO = 0
  170:       IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
  171:           INFO = 1
  172:       ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
  173:           INFO = 2
  174:       ELSE IF (M.LT.0) THEN
  175:           INFO = 3
  176:       ELSE IF (N.LT.0) THEN
  177:           INFO = 4
  178:       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  179:           INFO = 7
  180:       ELSE IF (LDB.LT.MAX(1,M)) THEN
  181:           INFO = 9
  182:       ELSE IF (LDC.LT.MAX(1,M)) THEN
  183:           INFO = 12
  184:       END IF
  185:       IF (INFO.NE.0) THEN
  186:           CALL XERBLA('DSYMM ',INFO)
  187:           RETURN
  188:       END IF
  189: *
  190: *     Quick return if possible.
  191: *
  192:       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  193:      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  194: *
  195: *     And when  alpha.eq.zero.
  196: *
  197:       IF (ALPHA.EQ.ZERO) THEN
  198:           IF (BETA.EQ.ZERO) THEN
  199:               DO 20 J = 1,N
  200:                   DO 10 I = 1,M
  201:                       C(I,J) = ZERO
  202:    10             CONTINUE
  203:    20         CONTINUE
  204:           ELSE
  205:               DO 40 J = 1,N
  206:                   DO 30 I = 1,M
  207:                       C(I,J) = BETA*C(I,J)
  208:    30             CONTINUE
  209:    40         CONTINUE
  210:           END IF
  211:           RETURN
  212:       END IF
  213: *
  214: *     Start the operations.
  215: *
  216:       IF (LSAME(SIDE,'L')) THEN
  217: *
  218: *        Form  C := alpha*A*B + beta*C.
  219: *
  220:           IF (UPPER) THEN
  221:               DO 70 J = 1,N
  222:                   DO 60 I = 1,M
  223:                       TEMP1 = ALPHA*B(I,J)
  224:                       TEMP2 = ZERO
  225:                       DO 50 K = 1,I - 1
  226:                           C(K,J) = C(K,J) + TEMP1*A(K,I)
  227:                           TEMP2 = TEMP2 + B(K,J)*A(K,I)
  228:    50                 CONTINUE
  229:                       IF (BETA.EQ.ZERO) THEN
  230:                           C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
  231:                       ELSE
  232:                           C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
  233:      +                             ALPHA*TEMP2
  234:                       END IF
  235:    60             CONTINUE
  236:    70         CONTINUE
  237:           ELSE
  238:               DO 100 J = 1,N
  239:                   DO 90 I = M,1,-1
  240:                       TEMP1 = ALPHA*B(I,J)
  241:                       TEMP2 = ZERO
  242:                       DO 80 K = I + 1,M
  243:                           C(K,J) = C(K,J) + TEMP1*A(K,I)
  244:                           TEMP2 = TEMP2 + B(K,J)*A(K,I)
  245:    80                 CONTINUE
  246:                       IF (BETA.EQ.ZERO) THEN
  247:                           C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
  248:                       ELSE
  249:                           C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
  250:      +                             ALPHA*TEMP2
  251:                       END IF
  252:    90             CONTINUE
  253:   100         CONTINUE
  254:           END IF
  255:       ELSE
  256: *
  257: *        Form  C := alpha*B*A + beta*C.
  258: *
  259:           DO 170 J = 1,N
  260:               TEMP1 = ALPHA*A(J,J)
  261:               IF (BETA.EQ.ZERO) THEN
  262:                   DO 110 I = 1,M
  263:                       C(I,J) = TEMP1*B(I,J)
  264:   110             CONTINUE
  265:               ELSE
  266:                   DO 120 I = 1,M
  267:                       C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
  268:   120             CONTINUE
  269:               END IF
  270:               DO 140 K = 1,J - 1
  271:                   IF (UPPER) THEN
  272:                       TEMP1 = ALPHA*A(K,J)
  273:                   ELSE
  274:                       TEMP1 = ALPHA*A(J,K)
  275:                   END IF
  276:                   DO 130 I = 1,M
  277:                       C(I,J) = C(I,J) + TEMP1*B(I,K)
  278:   130             CONTINUE
  279:   140         CONTINUE
  280:               DO 160 K = J + 1,N
  281:                   IF (UPPER) THEN
  282:                       TEMP1 = ALPHA*A(J,K)
  283:                   ELSE
  284:                       TEMP1 = ALPHA*A(K,J)
  285:                   END IF
  286:                   DO 150 I = 1,M
  287:                       C(I,J) = C(I,J) + TEMP1*B(I,K)
  288:   150             CONTINUE
  289:   160         CONTINUE
  290:   170     CONTINUE
  291:       END IF
  292: *
  293:       RETURN
  294: *
  295: *     End of DSYMM .
  296: *
  297:       END

CVSweb interface <joel.bertrand@systella.fr>