File:  [local] / rpl / lapack / blas / dspr2.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE PRECISION ALPHA
    4:       INTEGER INCX,INCY,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE PRECISION AP(*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  DSPR2  performs the symmetric rank 2 operation
   15: *
   16: *     A := alpha*x*y' + alpha*y*x' + A,
   17: *
   18: *  where alpha is a scalar, x and y are n element vectors and A is an
   19: *  n by n symmetric matrix, supplied in packed form.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the matrix A is supplied in the packed
   27: *           array AP as follows:
   28: *
   29: *              UPLO = 'U' or 'u'   The upper triangular part of A is
   30: *                                  supplied in AP.
   31: *
   32: *              UPLO = 'L' or 'l'   The lower triangular part of A is
   33: *                                  supplied in AP.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  ALPHA  - DOUBLE PRECISION.
   43: *           On entry, ALPHA specifies the scalar alpha.
   44: *           Unchanged on exit.
   45: *
   46: *  X      - DOUBLE PRECISION array of dimension at least
   47: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   48: *           Before entry, the incremented array X must contain the n
   49: *           element vector x.
   50: *           Unchanged on exit.
   51: *
   52: *  INCX   - INTEGER.
   53: *           On entry, INCX specifies the increment for the elements of
   54: *           X. INCX must not be zero.
   55: *           Unchanged on exit.
   56: *
   57: *  Y      - DOUBLE PRECISION array of dimension at least
   58: *           ( 1 + ( n - 1 )*abs( INCY ) ).
   59: *           Before entry, the incremented array Y must contain the n
   60: *           element vector y.
   61: *           Unchanged on exit.
   62: *
   63: *  INCY   - INTEGER.
   64: *           On entry, INCY specifies the increment for the elements of
   65: *           Y. INCY must not be zero.
   66: *           Unchanged on exit.
   67: *
   68: *  AP     - DOUBLE PRECISION array of DIMENSION at least
   69: *           ( ( n*( n + 1 ) )/2 ).
   70: *           Before entry with  UPLO = 'U' or 'u', the array AP must
   71: *           contain the upper triangular part of the symmetric matrix
   72: *           packed sequentially, column by column, so that AP( 1 )
   73: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
   74: *           and a( 2, 2 ) respectively, and so on. On exit, the array
   75: *           AP is overwritten by the upper triangular part of the
   76: *           updated matrix.
   77: *           Before entry with UPLO = 'L' or 'l', the array AP must
   78: *           contain the lower triangular part of the symmetric matrix
   79: *           packed sequentially, column by column, so that AP( 1 )
   80: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
   81: *           and a( 3, 1 ) respectively, and so on. On exit, the array
   82: *           AP is overwritten by the lower triangular part of the
   83: *           updated matrix.
   84: *
   85: *  Further Details
   86: *  ===============
   87: *
   88: *  Level 2 Blas routine.
   89: *
   90: *  -- Written on 22-October-1986.
   91: *     Jack Dongarra, Argonne National Lab.
   92: *     Jeremy Du Croz, Nag Central Office.
   93: *     Sven Hammarling, Nag Central Office.
   94: *     Richard Hanson, Sandia National Labs.
   95: *
   96: *  =====================================================================
   97: *
   98: *     .. Parameters ..
   99:       DOUBLE PRECISION ZERO
  100:       PARAMETER (ZERO=0.0D+0)
  101: *     ..
  102: *     .. Local Scalars ..
  103:       DOUBLE PRECISION TEMP1,TEMP2
  104:       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
  105: *     ..
  106: *     .. External Functions ..
  107:       LOGICAL LSAME
  108:       EXTERNAL LSAME
  109: *     ..
  110: *     .. External Subroutines ..
  111:       EXTERNAL XERBLA
  112: *     ..
  113: *
  114: *     Test the input parameters.
  115: *
  116:       INFO = 0
  117:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  118:           INFO = 1
  119:       ELSE IF (N.LT.0) THEN
  120:           INFO = 2
  121:       ELSE IF (INCX.EQ.0) THEN
  122:           INFO = 5
  123:       ELSE IF (INCY.EQ.0) THEN
  124:           INFO = 7
  125:       END IF
  126:       IF (INFO.NE.0) THEN
  127:           CALL XERBLA('DSPR2 ',INFO)
  128:           RETURN
  129:       END IF
  130: *
  131: *     Quick return if possible.
  132: *
  133:       IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
  134: *
  135: *     Set up the start points in X and Y if the increments are not both
  136: *     unity.
  137: *
  138:       IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
  139:           IF (INCX.GT.0) THEN
  140:               KX = 1
  141:           ELSE
  142:               KX = 1 - (N-1)*INCX
  143:           END IF
  144:           IF (INCY.GT.0) THEN
  145:               KY = 1
  146:           ELSE
  147:               KY = 1 - (N-1)*INCY
  148:           END IF
  149:           JX = KX
  150:           JY = KY
  151:       END IF
  152: *
  153: *     Start the operations. In this version the elements of the array AP
  154: *     are accessed sequentially with one pass through AP.
  155: *
  156:       KK = 1
  157:       IF (LSAME(UPLO,'U')) THEN
  158: *
  159: *        Form  A  when upper triangle is stored in AP.
  160: *
  161:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  162:               DO 20 J = 1,N
  163:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  164:                       TEMP1 = ALPHA*Y(J)
  165:                       TEMP2 = ALPHA*X(J)
  166:                       K = KK
  167:                       DO 10 I = 1,J
  168:                           AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
  169:                           K = K + 1
  170:    10                 CONTINUE
  171:                   END IF
  172:                   KK = KK + J
  173:    20         CONTINUE
  174:           ELSE
  175:               DO 40 J = 1,N
  176:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  177:                       TEMP1 = ALPHA*Y(JY)
  178:                       TEMP2 = ALPHA*X(JX)
  179:                       IX = KX
  180:                       IY = KY
  181:                       DO 30 K = KK,KK + J - 1
  182:                           AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
  183:                           IX = IX + INCX
  184:                           IY = IY + INCY
  185:    30                 CONTINUE
  186:                   END IF
  187:                   JX = JX + INCX
  188:                   JY = JY + INCY
  189:                   KK = KK + J
  190:    40         CONTINUE
  191:           END IF
  192:       ELSE
  193: *
  194: *        Form  A  when lower triangle is stored in AP.
  195: *
  196:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  197:               DO 60 J = 1,N
  198:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  199:                       TEMP1 = ALPHA*Y(J)
  200:                       TEMP2 = ALPHA*X(J)
  201:                       K = KK
  202:                       DO 50 I = J,N
  203:                           AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
  204:                           K = K + 1
  205:    50                 CONTINUE
  206:                   END IF
  207:                   KK = KK + N - J + 1
  208:    60         CONTINUE
  209:           ELSE
  210:               DO 80 J = 1,N
  211:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  212:                       TEMP1 = ALPHA*Y(JY)
  213:                       TEMP2 = ALPHA*X(JX)
  214:                       IX = JX
  215:                       IY = JY
  216:                       DO 70 K = KK,KK + N - J
  217:                           AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
  218:                           IX = IX + INCX
  219:                           IY = IY + INCY
  220:    70                 CONTINUE
  221:                   END IF
  222:                   JX = JX + INCX
  223:                   JY = JY + INCY
  224:                   KK = KK + N - J + 1
  225:    80         CONTINUE
  226:           END IF
  227:       END IF
  228: *
  229:       RETURN
  230: *
  231: *     End of DSPR2 .
  232: *
  233:       END

CVSweb interface <joel.bertrand@systella.fr>