Annotation of rpl/lapack/blas/dspr.f, revision 1.11
1.8 bertrand 1: *> \brief \b DSPR
2: *
3: * =========== DOCUMENTATION ===========
4: *
5: * Online html documentation available at
6: * http://www.netlib.org/lapack/explore-html/
7: *
8: * Definition:
9: * ===========
10: *
11: * SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP)
12: *
13: * .. Scalar Arguments ..
14: * DOUBLE PRECISION ALPHA
15: * INTEGER INCX,N
16: * CHARACTER UPLO
17: * ..
18: * .. Array Arguments ..
19: * DOUBLE PRECISION AP(*),X(*)
20: * ..
21: *
22: *
23: *> \par Purpose:
24: * =============
25: *>
26: *> \verbatim
27: *>
28: *> DSPR performs the symmetric rank 1 operation
29: *>
30: *> A := alpha*x*x**T + A,
31: *>
32: *> where alpha is a real scalar, x is an n element vector and A is an
33: *> n by n symmetric matrix, supplied in packed form.
34: *> \endverbatim
35: *
36: * Arguments:
37: * ==========
38: *
39: *> \param[in] UPLO
40: *> \verbatim
41: *> UPLO is CHARACTER*1
42: *> On entry, UPLO specifies whether the upper or lower
43: *> triangular part of the matrix A is supplied in the packed
44: *> array AP as follows:
45: *>
46: *> UPLO = 'U' or 'u' The upper triangular part of A is
47: *> supplied in AP.
48: *>
49: *> UPLO = 'L' or 'l' The lower triangular part of A is
50: *> supplied in AP.
51: *> \endverbatim
52: *>
53: *> \param[in] N
54: *> \verbatim
55: *> N is INTEGER
56: *> On entry, N specifies the order of the matrix A.
57: *> N must be at least zero.
58: *> \endverbatim
59: *>
60: *> \param[in] ALPHA
61: *> \verbatim
62: *> ALPHA is DOUBLE PRECISION.
63: *> On entry, ALPHA specifies the scalar alpha.
64: *> \endverbatim
65: *>
66: *> \param[in] X
67: *> \verbatim
68: *> X is DOUBLE PRECISION array of dimension at least
69: *> ( 1 + ( n - 1 )*abs( INCX ) ).
70: *> Before entry, the incremented array X must contain the n
71: *> element vector x.
72: *> \endverbatim
73: *>
74: *> \param[in] INCX
75: *> \verbatim
76: *> INCX is INTEGER
77: *> On entry, INCX specifies the increment for the elements of
78: *> X. INCX must not be zero.
79: *> \endverbatim
80: *>
81: *> \param[in,out] AP
82: *> \verbatim
83: *> AP is DOUBLE PRECISION array of DIMENSION at least
84: *> ( ( n*( n + 1 ) )/2 ).
85: *> Before entry with UPLO = 'U' or 'u', the array AP must
86: *> contain the upper triangular part of the symmetric matrix
87: *> packed sequentially, column by column, so that AP( 1 )
88: *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
89: *> and a( 2, 2 ) respectively, and so on. On exit, the array
90: *> AP is overwritten by the upper triangular part of the
91: *> updated matrix.
92: *> Before entry with UPLO = 'L' or 'l', the array AP must
93: *> contain the lower triangular part of the symmetric matrix
94: *> packed sequentially, column by column, so that AP( 1 )
95: *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
96: *> and a( 3, 1 ) respectively, and so on. On exit, the array
97: *> AP is overwritten by the lower triangular part of the
98: *> updated matrix.
99: *> \endverbatim
100: *
101: * Authors:
102: * ========
103: *
104: *> \author Univ. of Tennessee
105: *> \author Univ. of California Berkeley
106: *> \author Univ. of Colorado Denver
107: *> \author NAG Ltd.
108: *
109: *> \date November 2011
110: *
111: *> \ingroup double_blas_level2
112: *
113: *> \par Further Details:
114: * =====================
115: *>
116: *> \verbatim
117: *>
118: *> Level 2 Blas routine.
119: *>
120: *> -- Written on 22-October-1986.
121: *> Jack Dongarra, Argonne National Lab.
122: *> Jeremy Du Croz, Nag Central Office.
123: *> Sven Hammarling, Nag Central Office.
124: *> Richard Hanson, Sandia National Labs.
125: *> \endverbatim
126: *>
127: * =====================================================================
1.1 bertrand 128: SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP)
1.8 bertrand 129: *
130: * -- Reference BLAS level2 routine (version 3.4.0) --
131: * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
132: * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
133: * November 2011
134: *
1.1 bertrand 135: * .. Scalar Arguments ..
136: DOUBLE PRECISION ALPHA
137: INTEGER INCX,N
138: CHARACTER UPLO
139: * ..
140: * .. Array Arguments ..
141: DOUBLE PRECISION AP(*),X(*)
142: * ..
143: *
144: * =====================================================================
145: *
146: * .. Parameters ..
147: DOUBLE PRECISION ZERO
148: PARAMETER (ZERO=0.0D+0)
149: * ..
150: * .. Local Scalars ..
151: DOUBLE PRECISION TEMP
152: INTEGER I,INFO,IX,J,JX,K,KK,KX
153: * ..
154: * .. External Functions ..
155: LOGICAL LSAME
156: EXTERNAL LSAME
157: * ..
158: * .. External Subroutines ..
159: EXTERNAL XERBLA
160: * ..
161: *
162: * Test the input parameters.
163: *
164: INFO = 0
165: IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
166: INFO = 1
167: ELSE IF (N.LT.0) THEN
168: INFO = 2
169: ELSE IF (INCX.EQ.0) THEN
170: INFO = 5
171: END IF
172: IF (INFO.NE.0) THEN
173: CALL XERBLA('DSPR ',INFO)
174: RETURN
175: END IF
176: *
177: * Quick return if possible.
178: *
179: IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
180: *
181: * Set the start point in X if the increment is not unity.
182: *
183: IF (INCX.LE.0) THEN
184: KX = 1 - (N-1)*INCX
185: ELSE IF (INCX.NE.1) THEN
186: KX = 1
187: END IF
188: *
189: * Start the operations. In this version the elements of the array AP
190: * are accessed sequentially with one pass through AP.
191: *
192: KK = 1
193: IF (LSAME(UPLO,'U')) THEN
194: *
195: * Form A when upper triangle is stored in AP.
196: *
197: IF (INCX.EQ.1) THEN
198: DO 20 J = 1,N
199: IF (X(J).NE.ZERO) THEN
200: TEMP = ALPHA*X(J)
201: K = KK
202: DO 10 I = 1,J
203: AP(K) = AP(K) + X(I)*TEMP
204: K = K + 1
205: 10 CONTINUE
206: END IF
207: KK = KK + J
208: 20 CONTINUE
209: ELSE
210: JX = KX
211: DO 40 J = 1,N
212: IF (X(JX).NE.ZERO) THEN
213: TEMP = ALPHA*X(JX)
214: IX = KX
215: DO 30 K = KK,KK + J - 1
216: AP(K) = AP(K) + X(IX)*TEMP
217: IX = IX + INCX
218: 30 CONTINUE
219: END IF
220: JX = JX + INCX
221: KK = KK + J
222: 40 CONTINUE
223: END IF
224: ELSE
225: *
226: * Form A when lower triangle is stored in AP.
227: *
228: IF (INCX.EQ.1) THEN
229: DO 60 J = 1,N
230: IF (X(J).NE.ZERO) THEN
231: TEMP = ALPHA*X(J)
232: K = KK
233: DO 50 I = J,N
234: AP(K) = AP(K) + X(I)*TEMP
235: K = K + 1
236: 50 CONTINUE
237: END IF
238: KK = KK + N - J + 1
239: 60 CONTINUE
240: ELSE
241: JX = KX
242: DO 80 J = 1,N
243: IF (X(JX).NE.ZERO) THEN
244: TEMP = ALPHA*X(JX)
245: IX = JX
246: DO 70 K = KK,KK + N - J
247: AP(K) = AP(K) + X(IX)*TEMP
248: IX = IX + INCX
249: 70 CONTINUE
250: END IF
251: JX = JX + INCX
252: KK = KK + N - J + 1
253: 80 CONTINUE
254: END IF
255: END IF
256: *
257: RETURN
258: *
259: * End of DSPR .
260: *
261: END
CVSweb interface <joel.bertrand@systella.fr>