File:  [local] / rpl / lapack / blas / dsbmv.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:01 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE PRECISION ALPHA,BETA
    4:       INTEGER INCX,INCY,K,LDA,N
    5:       CHARACTER UPLO
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  DSBMV  performs the matrix-vector  operation
   15: *
   16: *     y := alpha*A*x + beta*y,
   17: *
   18: *  where alpha and beta are scalars, x and y are n element vectors and
   19: *  A is an n by n symmetric band matrix, with k super-diagonals.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  UPLO   - CHARACTER*1.
   25: *           On entry, UPLO specifies whether the upper or lower
   26: *           triangular part of the band matrix A is being supplied as
   27: *           follows:
   28: *
   29: *              UPLO = 'U' or 'u'   The upper triangular part of A is
   30: *                                  being supplied.
   31: *
   32: *              UPLO = 'L' or 'l'   The lower triangular part of A is
   33: *                                  being supplied.
   34: *
   35: *           Unchanged on exit.
   36: *
   37: *  N      - INTEGER.
   38: *           On entry, N specifies the order of the matrix A.
   39: *           N must be at least zero.
   40: *           Unchanged on exit.
   41: *
   42: *  K      - INTEGER.
   43: *           On entry, K specifies the number of super-diagonals of the
   44: *           matrix A. K must satisfy  0 .le. K.
   45: *           Unchanged on exit.
   46: *
   47: *  ALPHA  - DOUBLE PRECISION.
   48: *           On entry, ALPHA specifies the scalar alpha.
   49: *           Unchanged on exit.
   50: *
   51: *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
   52: *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
   53: *           by n part of the array A must contain the upper triangular
   54: *           band part of the symmetric matrix, supplied column by
   55: *           column, with the leading diagonal of the matrix in row
   56: *           ( k + 1 ) of the array, the first super-diagonal starting at
   57: *           position 2 in row k, and so on. The top left k by k triangle
   58: *           of the array A is not referenced.
   59: *           The following program segment will transfer the upper
   60: *           triangular part of a symmetric band matrix from conventional
   61: *           full matrix storage to band storage:
   62: *
   63: *                 DO 20, J = 1, N
   64: *                    M = K + 1 - J
   65: *                    DO 10, I = MAX( 1, J - K ), J
   66: *                       A( M + I, J ) = matrix( I, J )
   67: *              10    CONTINUE
   68: *              20 CONTINUE
   69: *
   70: *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
   71: *           by n part of the array A must contain the lower triangular
   72: *           band part of the symmetric matrix, supplied column by
   73: *           column, with the leading diagonal of the matrix in row 1 of
   74: *           the array, the first sub-diagonal starting at position 1 in
   75: *           row 2, and so on. The bottom right k by k triangle of the
   76: *           array A is not referenced.
   77: *           The following program segment will transfer the lower
   78: *           triangular part of a symmetric band matrix from conventional
   79: *           full matrix storage to band storage:
   80: *
   81: *                 DO 20, J = 1, N
   82: *                    M = 1 - J
   83: *                    DO 10, I = J, MIN( N, J + K )
   84: *                       A( M + I, J ) = matrix( I, J )
   85: *              10    CONTINUE
   86: *              20 CONTINUE
   87: *
   88: *           Unchanged on exit.
   89: *
   90: *  LDA    - INTEGER.
   91: *           On entry, LDA specifies the first dimension of A as declared
   92: *           in the calling (sub) program. LDA must be at least
   93: *           ( k + 1 ).
   94: *           Unchanged on exit.
   95: *
   96: *  X      - DOUBLE PRECISION array of DIMENSION at least
   97: *           ( 1 + ( n - 1 )*abs( INCX ) ).
   98: *           Before entry, the incremented array X must contain the
   99: *           vector x.
  100: *           Unchanged on exit.
  101: *
  102: *  INCX   - INTEGER.
  103: *           On entry, INCX specifies the increment for the elements of
  104: *           X. INCX must not be zero.
  105: *           Unchanged on exit.
  106: *
  107: *  BETA   - DOUBLE PRECISION.
  108: *           On entry, BETA specifies the scalar beta.
  109: *           Unchanged on exit.
  110: *
  111: *  Y      - DOUBLE PRECISION array of DIMENSION at least
  112: *           ( 1 + ( n - 1 )*abs( INCY ) ).
  113: *           Before entry, the incremented array Y must contain the
  114: *           vector y. On exit, Y is overwritten by the updated vector y.
  115: *
  116: *  INCY   - INTEGER.
  117: *           On entry, INCY specifies the increment for the elements of
  118: *           Y. INCY must not be zero.
  119: *           Unchanged on exit.
  120: *
  121: *  Further Details
  122: *  ===============
  123: *
  124: *  Level 2 Blas routine.
  125: *  The vector and matrix arguments are not referenced when N = 0, or M = 0
  126: *
  127: *  -- Written on 22-October-1986.
  128: *     Jack Dongarra, Argonne National Lab.
  129: *     Jeremy Du Croz, Nag Central Office.
  130: *     Sven Hammarling, Nag Central Office.
  131: *     Richard Hanson, Sandia National Labs.
  132: *
  133: *  =====================================================================
  134: *
  135: *     .. Parameters ..
  136:       DOUBLE PRECISION ONE,ZERO
  137:       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  138: *     ..
  139: *     .. Local Scalars ..
  140:       DOUBLE PRECISION TEMP1,TEMP2
  141:       INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
  142: *     ..
  143: *     .. External Functions ..
  144:       LOGICAL LSAME
  145:       EXTERNAL LSAME
  146: *     ..
  147: *     .. External Subroutines ..
  148:       EXTERNAL XERBLA
  149: *     ..
  150: *     .. Intrinsic Functions ..
  151:       INTRINSIC MAX,MIN
  152: *     ..
  153: *
  154: *     Test the input parameters.
  155: *
  156:       INFO = 0
  157:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  158:           INFO = 1
  159:       ELSE IF (N.LT.0) THEN
  160:           INFO = 2
  161:       ELSE IF (K.LT.0) THEN
  162:           INFO = 3
  163:       ELSE IF (LDA.LT. (K+1)) THEN
  164:           INFO = 6
  165:       ELSE IF (INCX.EQ.0) THEN
  166:           INFO = 8
  167:       ELSE IF (INCY.EQ.0) THEN
  168:           INFO = 11
  169:       END IF
  170:       IF (INFO.NE.0) THEN
  171:           CALL XERBLA('DSBMV ',INFO)
  172:           RETURN
  173:       END IF
  174: *
  175: *     Quick return if possible.
  176: *
  177:       IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  178: *
  179: *     Set up the start points in  X  and  Y.
  180: *
  181:       IF (INCX.GT.0) THEN
  182:           KX = 1
  183:       ELSE
  184:           KX = 1 - (N-1)*INCX
  185:       END IF
  186:       IF (INCY.GT.0) THEN
  187:           KY = 1
  188:       ELSE
  189:           KY = 1 - (N-1)*INCY
  190:       END IF
  191: *
  192: *     Start the operations. In this version the elements of the array A
  193: *     are accessed sequentially with one pass through A.
  194: *
  195: *     First form  y := beta*y.
  196: *
  197:       IF (BETA.NE.ONE) THEN
  198:           IF (INCY.EQ.1) THEN
  199:               IF (BETA.EQ.ZERO) THEN
  200:                   DO 10 I = 1,N
  201:                       Y(I) = ZERO
  202:    10             CONTINUE
  203:               ELSE
  204:                   DO 20 I = 1,N
  205:                       Y(I) = BETA*Y(I)
  206:    20             CONTINUE
  207:               END IF
  208:           ELSE
  209:               IY = KY
  210:               IF (BETA.EQ.ZERO) THEN
  211:                   DO 30 I = 1,N
  212:                       Y(IY) = ZERO
  213:                       IY = IY + INCY
  214:    30             CONTINUE
  215:               ELSE
  216:                   DO 40 I = 1,N
  217:                       Y(IY) = BETA*Y(IY)
  218:                       IY = IY + INCY
  219:    40             CONTINUE
  220:               END IF
  221:           END IF
  222:       END IF
  223:       IF (ALPHA.EQ.ZERO) RETURN
  224:       IF (LSAME(UPLO,'U')) THEN
  225: *
  226: *        Form  y  when upper triangle of A is stored.
  227: *
  228:           KPLUS1 = K + 1
  229:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  230:               DO 60 J = 1,N
  231:                   TEMP1 = ALPHA*X(J)
  232:                   TEMP2 = ZERO
  233:                   L = KPLUS1 - J
  234:                   DO 50 I = MAX(1,J-K),J - 1
  235:                       Y(I) = Y(I) + TEMP1*A(L+I,J)
  236:                       TEMP2 = TEMP2 + A(L+I,J)*X(I)
  237:    50             CONTINUE
  238:                   Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
  239:    60         CONTINUE
  240:           ELSE
  241:               JX = KX
  242:               JY = KY
  243:               DO 80 J = 1,N
  244:                   TEMP1 = ALPHA*X(JX)
  245:                   TEMP2 = ZERO
  246:                   IX = KX
  247:                   IY = KY
  248:                   L = KPLUS1 - J
  249:                   DO 70 I = MAX(1,J-K),J - 1
  250:                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
  251:                       TEMP2 = TEMP2 + A(L+I,J)*X(IX)
  252:                       IX = IX + INCX
  253:                       IY = IY + INCY
  254:    70             CONTINUE
  255:                   Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
  256:                   JX = JX + INCX
  257:                   JY = JY + INCY
  258:                   IF (J.GT.K) THEN
  259:                       KX = KX + INCX
  260:                       KY = KY + INCY
  261:                   END IF
  262:    80         CONTINUE
  263:           END IF
  264:       ELSE
  265: *
  266: *        Form  y  when lower triangle of A is stored.
  267: *
  268:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  269:               DO 100 J = 1,N
  270:                   TEMP1 = ALPHA*X(J)
  271:                   TEMP2 = ZERO
  272:                   Y(J) = Y(J) + TEMP1*A(1,J)
  273:                   L = 1 - J
  274:                   DO 90 I = J + 1,MIN(N,J+K)
  275:                       Y(I) = Y(I) + TEMP1*A(L+I,J)
  276:                       TEMP2 = TEMP2 + A(L+I,J)*X(I)
  277:    90             CONTINUE
  278:                   Y(J) = Y(J) + ALPHA*TEMP2
  279:   100         CONTINUE
  280:           ELSE
  281:               JX = KX
  282:               JY = KY
  283:               DO 120 J = 1,N
  284:                   TEMP1 = ALPHA*X(JX)
  285:                   TEMP2 = ZERO
  286:                   Y(JY) = Y(JY) + TEMP1*A(1,J)
  287:                   L = 1 - J
  288:                   IX = JX
  289:                   IY = JY
  290:                   DO 110 I = J + 1,MIN(N,J+K)
  291:                       IX = IX + INCX
  292:                       IY = IY + INCY
  293:                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
  294:                       TEMP2 = TEMP2 + A(L+I,J)*X(IX)
  295:   110             CONTINUE
  296:                   Y(JY) = Y(JY) + ALPHA*TEMP2
  297:                   JX = JX + INCX
  298:                   JY = JY + INCY
  299:   120         CONTINUE
  300:           END IF
  301:       END IF
  302: *
  303:       RETURN
  304: *
  305: *     End of DSBMV .
  306: *
  307:       END

CVSweb interface <joel.bertrand@systella.fr>