File:  [local] / rpl / lapack / blas / dgemv.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
    2: *     .. Scalar Arguments ..
    3:       DOUBLE PRECISION ALPHA,BETA
    4:       INTEGER INCX,INCY,LDA,M,N
    5:       CHARACTER TRANS
    6: *     ..
    7: *     .. Array Arguments ..
    8:       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
    9: *     ..
   10: *
   11: *  Purpose
   12: *  =======
   13: *
   14: *  DGEMV  performs one of the matrix-vector operations
   15: *
   16: *     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
   17: *
   18: *  where alpha and beta are scalars, x and y are vectors and A is an
   19: *  m by n matrix.
   20: *
   21: *  Arguments
   22: *  ==========
   23: *
   24: *  TRANS  - CHARACTER*1.
   25: *           On entry, TRANS specifies the operation to be performed as
   26: *           follows:
   27: *
   28: *              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
   29: *
   30: *              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
   31: *
   32: *              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
   33: *
   34: *           Unchanged on exit.
   35: *
   36: *  M      - INTEGER.
   37: *           On entry, M specifies the number of rows of the matrix A.
   38: *           M must be at least zero.
   39: *           Unchanged on exit.
   40: *
   41: *  N      - INTEGER.
   42: *           On entry, N specifies the number of columns of the matrix A.
   43: *           N must be at least zero.
   44: *           Unchanged on exit.
   45: *
   46: *  ALPHA  - DOUBLE PRECISION.
   47: *           On entry, ALPHA specifies the scalar alpha.
   48: *           Unchanged on exit.
   49: *
   50: *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
   51: *           Before entry, the leading m by n part of the array A must
   52: *           contain the matrix of coefficients.
   53: *           Unchanged on exit.
   54: *
   55: *  LDA    - INTEGER.
   56: *           On entry, LDA specifies the first dimension of A as declared
   57: *           in the calling (sub) program. LDA must be at least
   58: *           max( 1, m ).
   59: *           Unchanged on exit.
   60: *
   61: *  X      - DOUBLE PRECISION array of DIMENSION at least
   62: *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
   63: *           and at least
   64: *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
   65: *           Before entry, the incremented array X must contain the
   66: *           vector x.
   67: *           Unchanged on exit.
   68: *
   69: *  INCX   - INTEGER.
   70: *           On entry, INCX specifies the increment for the elements of
   71: *           X. INCX must not be zero.
   72: *           Unchanged on exit.
   73: *
   74: *  BETA   - DOUBLE PRECISION.
   75: *           On entry, BETA specifies the scalar beta. When BETA is
   76: *           supplied as zero then Y need not be set on input.
   77: *           Unchanged on exit.
   78: *
   79: *  Y      - DOUBLE PRECISION array of DIMENSION at least
   80: *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
   81: *           and at least
   82: *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
   83: *           Before entry with BETA non-zero, the incremented array Y
   84: *           must contain the vector y. On exit, Y is overwritten by the
   85: *           updated vector y.
   86: *
   87: *  INCY   - INTEGER.
   88: *           On entry, INCY specifies the increment for the elements of
   89: *           Y. INCY must not be zero.
   90: *           Unchanged on exit.
   91: *
   92: *  Further Details
   93: *  ===============
   94: *
   95: *  Level 2 Blas routine.
   96: *
   97: *  -- Written on 22-October-1986.
   98: *     Jack Dongarra, Argonne National Lab.
   99: *     Jeremy Du Croz, Nag Central Office.
  100: *     Sven Hammarling, Nag Central Office.
  101: *     Richard Hanson, Sandia National Labs.
  102: *
  103: *  =====================================================================
  104: *
  105: *     .. Parameters ..
  106:       DOUBLE PRECISION ONE,ZERO
  107:       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  108: *     ..
  109: *     .. Local Scalars ..
  110:       DOUBLE PRECISION TEMP
  111:       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
  112: *     ..
  113: *     .. External Functions ..
  114:       LOGICAL LSAME
  115:       EXTERNAL LSAME
  116: *     ..
  117: *     .. External Subroutines ..
  118:       EXTERNAL XERBLA
  119: *     ..
  120: *     .. Intrinsic Functions ..
  121:       INTRINSIC MAX
  122: *     ..
  123: *
  124: *     Test the input parameters.
  125: *
  126:       INFO = 0
  127:       IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  128:      +    .NOT.LSAME(TRANS,'C')) THEN
  129:           INFO = 1
  130:       ELSE IF (M.LT.0) THEN
  131:           INFO = 2
  132:       ELSE IF (N.LT.0) THEN
  133:           INFO = 3
  134:       ELSE IF (LDA.LT.MAX(1,M)) THEN
  135:           INFO = 6
  136:       ELSE IF (INCX.EQ.0) THEN
  137:           INFO = 8
  138:       ELSE IF (INCY.EQ.0) THEN
  139:           INFO = 11
  140:       END IF
  141:       IF (INFO.NE.0) THEN
  142:           CALL XERBLA('DGEMV ',INFO)
  143:           RETURN
  144:       END IF
  145: *
  146: *     Quick return if possible.
  147: *
  148:       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  149:      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  150: *
  151: *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
  152: *     up the start points in  X  and  Y.
  153: *
  154:       IF (LSAME(TRANS,'N')) THEN
  155:           LENX = N
  156:           LENY = M
  157:       ELSE
  158:           LENX = M
  159:           LENY = N
  160:       END IF
  161:       IF (INCX.GT.0) THEN
  162:           KX = 1
  163:       ELSE
  164:           KX = 1 - (LENX-1)*INCX
  165:       END IF
  166:       IF (INCY.GT.0) THEN
  167:           KY = 1
  168:       ELSE
  169:           KY = 1 - (LENY-1)*INCY
  170:       END IF
  171: *
  172: *     Start the operations. In this version the elements of A are
  173: *     accessed sequentially with one pass through A.
  174: *
  175: *     First form  y := beta*y.
  176: *
  177:       IF (BETA.NE.ONE) THEN
  178:           IF (INCY.EQ.1) THEN
  179:               IF (BETA.EQ.ZERO) THEN
  180:                   DO 10 I = 1,LENY
  181:                       Y(I) = ZERO
  182:    10             CONTINUE
  183:               ELSE
  184:                   DO 20 I = 1,LENY
  185:                       Y(I) = BETA*Y(I)
  186:    20             CONTINUE
  187:               END IF
  188:           ELSE
  189:               IY = KY
  190:               IF (BETA.EQ.ZERO) THEN
  191:                   DO 30 I = 1,LENY
  192:                       Y(IY) = ZERO
  193:                       IY = IY + INCY
  194:    30             CONTINUE
  195:               ELSE
  196:                   DO 40 I = 1,LENY
  197:                       Y(IY) = BETA*Y(IY)
  198:                       IY = IY + INCY
  199:    40             CONTINUE
  200:               END IF
  201:           END IF
  202:       END IF
  203:       IF (ALPHA.EQ.ZERO) RETURN
  204:       IF (LSAME(TRANS,'N')) THEN
  205: *
  206: *        Form  y := alpha*A*x + y.
  207: *
  208:           JX = KX
  209:           IF (INCY.EQ.1) THEN
  210:               DO 60 J = 1,N
  211:                   IF (X(JX).NE.ZERO) THEN
  212:                       TEMP = ALPHA*X(JX)
  213:                       DO 50 I = 1,M
  214:                           Y(I) = Y(I) + TEMP*A(I,J)
  215:    50                 CONTINUE
  216:                   END IF
  217:                   JX = JX + INCX
  218:    60         CONTINUE
  219:           ELSE
  220:               DO 80 J = 1,N
  221:                   IF (X(JX).NE.ZERO) THEN
  222:                       TEMP = ALPHA*X(JX)
  223:                       IY = KY
  224:                       DO 70 I = 1,M
  225:                           Y(IY) = Y(IY) + TEMP*A(I,J)
  226:                           IY = IY + INCY
  227:    70                 CONTINUE
  228:                   END IF
  229:                   JX = JX + INCX
  230:    80         CONTINUE
  231:           END IF
  232:       ELSE
  233: *
  234: *        Form  y := alpha*A'*x + y.
  235: *
  236:           JY = KY
  237:           IF (INCX.EQ.1) THEN
  238:               DO 100 J = 1,N
  239:                   TEMP = ZERO
  240:                   DO 90 I = 1,M
  241:                       TEMP = TEMP + A(I,J)*X(I)
  242:    90             CONTINUE
  243:                   Y(JY) = Y(JY) + ALPHA*TEMP
  244:                   JY = JY + INCY
  245:   100         CONTINUE
  246:           ELSE
  247:               DO 120 J = 1,N
  248:                   TEMP = ZERO
  249:                   IX = KX
  250:                   DO 110 I = 1,M
  251:                       TEMP = TEMP + A(I,J)*X(IX)
  252:                       IX = IX + INCX
  253:   110             CONTINUE
  254:                   Y(JY) = Y(JY) + ALPHA*TEMP
  255:                   JY = JY + INCY
  256:   120         CONTINUE
  257:           END IF
  258:       END IF
  259: *
  260:       RETURN
  261: *
  262: *     End of DGEMV .
  263: *
  264:       END

CVSweb interface <joel.bertrand@systella.fr>